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Abstract. We discuss the basic ideas and notions for partially ordered sets

of prime ideals in Noetherian rings. We give examples of such sets for the ring
of integers and for one- and two-dimensional integral domains of polynomials

and power series.

Thank you all for coming to this talk. We especially welcome the outstanding
students and teachers in the audience.

As someone who has been involved in preparing future teachers of mathematics, I
appreciate the role that algebra plays in elementary mathematics. It is very helpful
for future teachers to have a strong background in algebraic concepts. For example,
teachers can help elementary students learn basic facts by calling their attention to
algebraic properties like the commutative property of addition of integers: a + b =
b+a, for every pair of integers a, b. If a student knows that 5 + 2 = 7, she sees that
2 + 5 = 7.

1. Basics and first picturespreplec

As always in mathematics, we begin by explaining the words we use. Informally
the discipline algebra describes the study of sets with operations. Often the sets
contain numbers and the operations are addition and multiplication; sometimes the
sets consist of functions, such as polynomials. For this workshop and conference,
the most basic example of a concept involving sets with operations is that of a ring:

ringdef Definition 1.1. A ring is a set R with two operations, addition (+), and mul-
tiplication (·)—this includes subtraction as an inverse operation to addition, but
division is not always possible. A ring satisfies the usual basic properties, such as
the commutative property of addition (a + b = b + a, for every pair a, b ∈ R), and
the distributive property of multiplication over addition (a · (b+ c) = a · b+ a · c, for
every a, b, c ∈ R). Our rings are commutative for multiplication; that is, a · b = b ·a,
for every pair a, b ∈ R.
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Suggestion: If the concept of “ring” is new to you, try to think on your own of
the complete list of ten properties that should hold for the operations and elements
of a commutative ring, such as the ring of integers; see Examples ??. Then look
up the complete definition in an algebra book.

fexcr Examples 1.2. Examples of commutative rings:

(1) The integers Z := {0, 1,−1, 2,−2, 3,−3, · · · }; the rationals Q := {a/b | a, b ∈
Z and b > 0}; R := { directed distances (+ or −) from 0 on a number line};
and C := {a + bi | a, b ∈ R, i =

√
−1}. All of these rings use addition and

multiplication as the operations.
(2) The twelve clock & “clock arithmetic”: Z/12Z = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11},

with addition and multiplication defined “mod twelve” so that

1 + 2 = 3, 4 + 9 = 13 ≡ 1, 10 + 10 ≡ 7, 3× 4 ≡ 0.

(You can think of 12 as being “the same as” 0 and 24; 8 is the “same as” 20
and −4, etc.) You can add and multiply by using the clock; for 3× 4, start
at 4, move around 4 more, then 4 more, so see that you’re back at 0 ≡ 12.
Similarly, Z/2Z = {0, 1}, the “two clock” and Z/6Z, the “six clock”, etc.

(3) Rings of polynomials R[x] over a ring R: for example, Z[x] is the set of
all polynomials with coefficients in the integers Z, again with addition and
multiplication. That is, Z[x] is the set of all finite sums

∑n
i=0 aix

i of integers
ai times powers xi of the variable x. Therefore 0, 1, x, 1−5x, 2+x−7x2,−3+
11x5 are elements of Z[x].

(4) Power series in R over a ring R, written R[[x]]: the set of all “infinite poly-
nomials” in the variable x with coefficients in R. Thus Z[[x]] = {

∑∞
i=0 aix

i,
where ai ∈ Z and i is a nonnegative integer} and 1+2x+3x2 + · · · ∈ Z[[x]].
Notice that R[x] ⊆ R[[x]]. (Every polynomial is a power series with only
finitely many nonzero coefficients.)

Aside for teachers: In mathematics classes, sometimes students ask: “Will this
be on the test?” In teacher-preparatory classes, the students ask:“How is this rel-
evant for teaching?” Nearly everything in mathematics is relevant for teaching!
Teachers should know more than what the students learn; they need to know the
background, and the reasons. Ideally teachers should be familiar with what concepts
will come later in the curriculum. We want teachers to encourage their students to
think deeply about mathematics and to be able to solve problems. This means that
teachers also should think deeply about mathematics and be able to solve problems
at a higher level than the students.

In order to introduce prime ideals, we review some basic facts about prime
numbers in the ring of integers.

2. Prime numbers in ZprimesZ

The (positive) prime integers in Z are {2, 3, 5, 7, 11, 13, · · · }—they have exactly
two positive integer divisors in Z. They are also called irreducible elements, in the
sense that they cannot be factored further.

We use the following definitions more generally for any ring R:

eltdefs Definitions 2.1. Let R be a ring.

(1) An element u of R is a unit if there exists a multiplicative inverse u−1 ∈ R
with u(u−1) = 1 in R. For example, 1 and −1 are the only units of Z,
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but every nonzero element of Q is a unit: (−1)−1 = −1 in Z or Q, since
(−1) · (−1) = 1; in Q, (1/2)−1 = 2, since (1/2) · 2 = 1. In Z[x], 1 and −1
are the only units. In R[[x]], every element f(x) of form f(x) = u + xg(x),
for some u a unit of R and g(x) ∈ R[[x]] is a unit: for example, (1−x)−1 =
1 + x + x2 + · · · .

(2) For a, b ∈ R, we say a divides b and write a|b, provided b is a multiple of
a; that is, there exists c ∈ R so that a · c = b. We also say that a is
a factor of b. Thus we have 2|6 and 3d|6d, for every d ∈ Z with d 6= 0

(because 3d · 2 = 6d). Aside: Beginning students may get a, the divisor
mixed up with b, the dividend. Also they may get the vertical divides sign
“|” confused with the slanted fraction notation“/”, and so they mistake
a|b, which means “a divides b”, for a/b, which means the fraction a

b or “a
divided by b”.

(3) An element p of a ring R is prime provided p is not a unit, and, whenever
a, b ∈ R satisfy p|(a · b), we have p|a or p|b. For example 4 is not prime in
Z, since 4|(6 · 2), but 4 does not divide 6 and 4 does not divide 2. Also 2
is prime because if 2|(a · b), then a · b is an even integer, and then at least
one of the factors is even, so we do have that 2|a or 2|b. The prime integers
2 and −2 are called associates, since 2 = (−1)(−2); that is, 2 is a unit
times (-2). When we make a list of prime integers “up to associates”, we
list only one of each pair of associates. Usually we take the non-negative
prime elements for that list. Unlike common usage, we do consider that 0
is a prime element of Z.

One reason that prime numbers are important is because of the Fundamental
Theorem of Arithmetic:

FTA Theorem 2.2. The Fundamental Theorem of Arithmetic. For every integer n > 1,
there exists a unique expression n = pe11 · p

e2
2 · . . . p

et
t , with each pi a positive prime

integer, each ei ≥ 1 and p1 < p2 < . . . pt; for example, 36 = 22 · 32.

In most rings there is no such theorem. For example in the ring R = Z[
√
−5] =

{a+b
√
−5|a, b ∈ Z} we have 6 = (1+

√
−5) · (1−

√
−5) = 2 ·3, and so there are two

different expressions into irreducible elements. None of 2, 3, 1 −
√
−5, or 1 +

√
−5

are prime elements of Z[
√
−5]. The Fundamental Theorem does not hold.

Around 1870, Dedekind and Kummer developed an “ideal theory” using what
they called “ideals” and “prime ideals” to try to extend unique factorization.

idealdef Definition 2.3. Let R be a ring. Defined precisely, an ideal of R is a nonempty
subset I of R such that, (i) For every a, b ∈ I, a − b ∈ I and, (ii) For every a ∈ I
and r ∈ R, ar ∈ I. Property ii is the “sponge” property— multiplication from
anywhere in the ring is absorbed into the ideal.

For our purposes, an ideal I is a sum of multiples of particular elements of R,
e.g., for a, b, a1, a2, . . . , an ∈ R, a ring, you could take I = (a) = Ra = {ra | r ∈ R}
or I = (a, b) = Ra + Rb = {ra + sb | r, s ∈ R} or I = (a1, a2, . . . , an) = Ra1 +
Ra2 + . . . + Ran = {r1a1 + r2a2 + . . . + rnan | r1, r2, . . . , rn ∈ R}.

vecideals Remark 2.4. This is the same idea as taking spans of vectors in the vector space
R3. There you use diagonal brackets “< >” to mean “all sums of multiples of”.
For example
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〈1
2
0

 ,

3
4
1

〉 = R ·

1
2
0

+ R ·

3
4
1

 = {r1

1
2
0

+ r2

3
4
1

 , where r1, r2 ∈ R},

would be the “ideal” of R3 generated by the two vectors given. (But actually R3

is not a ring—multiplication of two vectors is not defined; the multiplication used
is an element of R times a vector in R3. The span of a set of vectors in a vector
space makes a subspace.)

In this talk we are concerned with Noetherian rings, named for the famous woman
mathematician Emmy Noether, who studied these rings.

Noethdef Definition 2.5. A ring R is Noetherian if every ideal is finitely generated. That
is, for every set I that satisfies (precise) Definition ?? (first paragraph), there are
finitely many elements a1, a2, . . . , an so that I = Ra1 + Ra2 + . . . + Ran (as in the
second paragraph of Definition ??).

Exercise 2.6. Prove that the ring of integers Z is Noetherian.

Hilbthm Theorem 2.7 (Hilbert). If a commutative ring R is Noetherian, then (i) R[x] is
Noetherian (Hilbert’s Basis Theorem) and (ii) R[[x]] is Noetherian.

Exercise 2.8. Prove or find a reference for proofs of (i) and (ii).

3. More examples of rings and idealssubmoreexri

exZi Example 3.1. For R = Z, some ideals are: (2) = 2Z = {0, 2,−2, 4,−4, · · · } = {
Even integers }; (6) = 6Z; 0 · Z = {0}.

idunR Exercise 3.2. Prove that if an ideal I of a ring R contains a unit u, then I = R.
(Use the “precise” part of Definition ??. Also see Example ?? for some ideas.)

idZprinc Exercise 3.3. Prove that in Z every ideal is generated by one element; that is, I
an ideal of Z =⇒ I = nZ, for some n ∈ Z.

exZxid Example 3.4. Let R = Z[x] = {polynomials with coefficients in Z}. Some ele-
ments are 0, 1, x + 1, x2 + 1, 7x3 + x− 2. Here are some ideals: I1 = (x) = xZ[x] =
{0, x, x2 + x, x3 + x, 7x4 + x2 − 2x, · · · }; I2 = (6) = {0, 6, 6x + 6, 6x2 + 6, 42x3 +
6x−12, · · · }; (x, 6) = xZ[x]+6Z[x] = { the set of all sums of elements from I1 and
I2} = {0, x, 6, x2 + x, x2 + x + 6, x3 + x, x3 + x, 7x4 + x2 − 2x, · · · } = {polynomials
with the constant term a multiple of 6}.

exZloc Example 3.5. We define a new ring R = Z(2), called “the localization of Z at (2)”,
by

Z(2) = {a
b
∈ Q in “lowest terms” with b not a multiple of 2} = {0 =

0

1
,

1

3
,

2

9
,

5

7
, · · · }.

Thus Z(2) is a subset of Q = { rational numbers }, consisting of the fractions with

odd denominators in lowest terms. Some ideals are (2) = 2Z(2) = {0 = 0
1 ,

2
3 ,

4
9 , · · · };

(6) = 6Z(2) = {0, 2
3 = 6· 29 ,

4
9 = 6· 227, · · · } = (2); (4) = 4Z(2) = {0, 4

3 = 4· 13 , 4 · · · } (
(2); (3) = 3Z(2) = {0, 1 = 3 · 13 ,

1
3 = 3 · 19 , · · · } = Z(2).

Exercise 3.6. For R = Z/12Z, find all the distinct ideals. Hint: There are only 5.



PRIME IDEALS 5

Exercise 3.7. For R = Z[[x]], (a) Describe all the ideals that contain x. (b) Prove
or disprove: Every ideal of Z[[x]] is generated by one element.

Remark 3.8. (1) Ideals of a ring can be “added” and “multiplied” to give other
ideals. For ideals I and J of a ring R, we set

I + J = {a + b | a ∈ I, b ∈ J} I · J = { finite sums

n∑
i=1

aibi | ai ∈ I, bj ∈ J}

(2) In Z, 2Z + 3Z = Z, whereas 2Z · 3Z = 6Z.

Exercise 3.9. Prove that if I and J are ideals of a ring R, then I + J and I · J
are also ideals of R. Use the “precise” part of Definition ??, and do it rigorously.
(First check that each of these is nonempty, then check (i) and (ii).)

4. Prime ideals and examplespridsex

In certain rings (Dedekind domains) every ideal is a product of a group of special
ideals, called prime ideals and the product has a certain uniqueness. We hope to
demonstrate that these ideals are useful and lead to beautiful results even when
there is no such factorization.

primeiddef Definition 4.1. Let P be an ideal of a ring R such that (i) P 6= R and (ii) If
a, b ∈ R satisfy a · b ∈ P then a or b ∈ P . Then P is a prime ideal.

primeidex Examples 4.2. (1) For R = Z, (2) is a prime ideal because ab ∈ (2) =⇒
ab = 2c, for some c ∈ Z =⇒ 2|(a · b) =⇒ 2|a or 2|b, since 2 is a prime
element. Similarly for every prime integer p, (p) is a prime ideal of Z. Also
{0} = (0) is a prime ideal, since a, b ∈ Z and a · b = 0 =⇒ a or b = 0.

(2) For R = Z[x], (x) is a prime ideal. Why? If f(x) · g(x) ∈ (x), say f(x) =
anx

n + · · · + a0 ∈ (x) and g(x) = bmxm + · · · + b0 ∈ Z[x]. Then f(x)g(x)
has constant term 0 =⇒ a0b0 = 0 =⇒ a0 = 0 or b0 = 0 =⇒ f(x) or
g(x) ∈ (x).

Exercise 4.3. Prove (x, 2), (2), and (x + 1) are prime ideals of Z[x]. (You may
assume they are ideals.)

xonlyinQxx Exercise 4.4. Prove (x) is the only non-zero prime ideal of Q[[x]].

5. First Spec Pictures1sppics

For R a commutative ring, let SpecR := { prime ideals of R}, the prime spectrum
of R, partially ordered by inclusion ⊆.

hgtdimdef Notation 5.1. The height of a prime ideal P in a commutative Noetherian ring
R is the length h of a maximal chain P0 ( P1 ( P2 ( · · · ( Ph = P ordered by
inclusion of prime ideals that ends at P . In a Noetherian ring, this length is always
finite. The “height” of an element u of a partially ordered set U is the length of a
maximal chain of elements in the partial order leading up to the element u.1 The
Krull dimension of a ring R or of a partially ordered set U is the maximum height
that occurs among all prime ideals, etc.

We like to draw pictures of the spectrum, where we put the height-zero prime
ideals at the bottom and draw lines to higher prime ideals to show containments.

1In the partially ordered sets we encounter here, this length is always finite.
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SpZpic Examples 5.2. (1) For R = Z, Spec(Z) = {(0), (2), (3), (5), (7), · · · }; that is,
there are countably (infinitely) many height-one prime ideals in Spec(Z)—
the ideals generated by the positive prime numbers, and a unique height-
zero prime ideal (0) = {0}, which is less than every other prime ideal. The
picture of the partially ordered set Spec(Z) is shown in Diagram ??.a. The
lines signify containment; e.g. (0) ⊆ (2), (0) ⊆ (3) etc.

(2) Similarly, for R = Q[x], the partially ordered set Spec(Q[x]) consists of the
ideals generated by irreducible polynomials—they have height one—and
the unique height-zero prime ideal (0) = {0}, which is less than every other
prime ideal, as is shown in Diagram ??.b.

(2) (3) (5) (7) · · ·

(0)

(x) (x + 1) (x2 + 2) · · ·

(0)

Diagram ??.a. Spec(Z) Diagram ??.b. Spec(Q[x])

Since the two prime spectra shown are both countable, they exactly match
up in a way that preserves the ordering. That is, Spec(Z) is order-isomorphic
to Spec(Q[x]); they are essentially the same partially ordered set, and we write
Spec(Z) ∼= Spec(Q[x]). They each look like a countable fan.

Here are more one-dimensional spectra:

SpZloc Examples 5.3. Let Z(2) = {a/b | a, b ∈ Z and b /∈ 2Z}. That is, we enlarge Z
to include Z and all fractions with odd denominators. The effect of this is that
all the prime numbers of Z other than (2) become units; for example, 3−1 = 1/3.
Facts: (1) Every ideal of Z(2) has the form aZ(2), for some integer a. (2) The prime
ideals of Z(2) are aZ(2), where a is a prime number in Z(2) and aZ(2) 6= Z(2). It
follows from these facts that Z(2) has only one prime ideal besides (0), namely 2Z(2).
Similarly Z(3) is all rational numbers, fractions a

b of integers a and b, such that with
the fraction in lowest terms the denominator b is not a multiple of 3; the only prime
ideals of Z(3) are (0) and 3Z(3). To extend this idea, we let Z(2)∪(3) = {ab | a, b ∈ Z,
b /∈ 2Z and b /∈ 3Z}. The only prime ideals of Z(2)∪(3) are (0), 2Z(2)∪(3) and
3Z(2)∪(3). We show these spec pictures below:

(2)

(0)

(2)

(0)

(3)

Diagram ??.a. Spec(Z(2)) Diagram ??.b. Spec(Z(2)∪(3))

By the discussion above, the prime spectrum of Z(3) is order-isomorphic to Spec(Z(2)).
The prime spectrum of Q[[x]] is also order-isomorphic to Spec(Z(2)) by Exercise ??.

ExSpZ2x Exercise 5.4. Make diagrams of Spec(Z(2)[x]) and Spec(Z(2)[[x]]). Justify.

Note. These and other topics are continued in the Research Lecture.


