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Abstract. Let R ⊆ D be a going-up extension of rings. The purpose of this

paper is to show that R ⊆ D is a generalized going-up extension.

In this paper all rings are commutative rings, and with 1 if necessary. Our aim
is to show the following.

(1) Let (Pα)α∈Ω be a chain of prime ideals of an integral domain R. Then
there exists a valuation domain V containing R with a chain of prime ideals
(Qα)α∈Ω lying over (Pα)α∈Ω.

(2) Let D ⊇ R be a going-up ring extension. Then it is a generalized going-up
extension, in other words, for any chain P0 ⊆ (Pα)α∈Ω of prime ideals of
R and a prime ideal Q0 of D lying over P0, there exists a chain of prime
ideals Q0 ⊆ (Qα)α∈Ω lying over (Pα)α∈Ω.

We will try to make this survey paper as self-contained as possible.

Definition 1. A ring V is a valuation ring if for every two elements a, b of V , a | b
or b | a.

Remark 2. V is a valuation domain if and only if for every element x in the
quotient field of V , x or 1/x is in V . In other words, K = V ∪ (V \ 0)−1, where K
is the quotient field of V . Also V is a valuation domain if and only if all the ideals
of V are linearly ordered.

Theorem 3. Let V ⊇W be valuation domains with the same quotient field. Then
V = WP for some prime ideal P of W .

Proof. Let M be the maximal ideal of V and P := M∩W . We claim that V = WP .
Clearly WP ⊆ V . Conversely let x ∈ V . Since W is a valuation domain, x or 1/x
is in W . Suppose that x is not in W ; then 1/x is in W . We show that 1/x is not
in P . For otherwise 1/x ∈ P ⊆ M , which implies that M contains a unit element
1/x, a contradiction. Thus 1/x ∈W \ P and hence x = 1/(1/x) ∈WP . �

Corollary 4. Let V ⊇W be valuation domains with the same quotient field. Then
Spec(V ) ⊆ Spec(W ).

Proof. Let M be the maximal ideal of V and let P := M ∩W . We have V = WP

by Theorem ?? and M = PP . However PP = P . For s ∈ W \ P , P ⊆ sW and
hence P ⊆ sP . Therefore s−1P ⊆ P . Thus M = PP = P , which implies that every
prime ideal of V is also a prime ideal of W . �
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Let D ⊇ R be a ring extension of R. An element x of D is integral over R if
f(x) = 0 for some monic polynomial f over R, i.e.,

xn + rn−1x
n−1 + · · ·+ r1x+ r0 = 0

for some elements r0, r1, . . . , rn−1 of R.
Thus x being integral over R means that x(1, x, x2, . . . , xn) ⊆ (1, x, x2, . . . , xn)

for some n ≥ 1. Note that (1, x, x2, . . . , xn) is a finitely generated R-module and
Ann((1, x, x2, . . . , xn)) = {0}.

Theorem 5. Let R be a ring with 1. Let x be an element in an extension ring
D of R. Then x is integral over R if and only if there exists a finitely generated
R-module I ⊆ D such that Ann(I) = {0} and xI ⊆ I.

Proof. It is an easy exercise using Cramer’s rule. �

Corollary 6. Integral elements are closed under addition and multiplication.

Proof. Let x ∈ D ⊇ R be integral over R. x being integral over R means that there
exists a finitely generated R-module I ⊆ D such that Ann(I) = {0} and xI ⊆ I.
For finitely many integral elements x1, . . . , xm over R, choose finitely generated R-
modules I1, . . . , Im as above. Then (x1, . . . , xm)I1 · · · Im ⊆ I1 · · · Im and I1 · · · Im
is a finitely generated R-module such that Ann(I1 · · · Im) = {0}. �

Theorem 7. (Lying-over). Let R′ ⊇ R be an integral ring extension of R. Let P
be a prime ideal of R. Then there exists a prime ideal P ′ of R′ lying over P .

Proof. Let S := R \ P . Then S is a multiplicatively closed subset of R and hence
of R′. Let Γ be the collection of ideals Q of R′ such that Q ⊇ P and Q ∩ S = ∅.
First we show that Γ is nonempty.

Claim: PR′ ∩ S = ∅.
Note that PR′ is integral over P . Indeed look at each element of the form px,

where p ∈ P and x ∈ R′. Since x is integral over R,

xn + rn−1x
n−1 + · · ·+ r1x+ r0 = 0

for some elements r0, r1, . . . , rn−1 of R. From this equation, we get

(px)n + rn−1p(px)n−1 + · · ·+ r1p
n−1(px) + r0p

n = 0,

an integral equation for px over P , and hence any finite combination of them is
integral over P by Corollary ??. Now suppose s = x, where s ∈ S and x ∈ PR′.
Then s = x is integral over P . This is a contradiction since

sn + pn−1s
n−1 + · · ·+ p1s+ p0 = 0,

where each pi ∈ P , implies sn ∈ P .
Thus Γ 6= ∅. Choose a maximal element of Γ, i.e., an ideal Q maximal with

respect to the property: Q ⊇ P and Q∩S = ∅. We know by Krull (see [?, Theorem
1]) that Q is a prime ideal. Clearly Q lies over P . �

Theorem 8. Let R be an integral domain and P be a prime ideal of R. Then there
is a valuation overring (V,M) of R such that M contracts to P .
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Proof. Since P = PRP ∩R, it suffices to prove the theorem under the assumption
that R is quasi-local with maximal ideal P .

Let S be the set of overrings (A,H) of R such that H is a proper ideal of A
and H ⊇ P . We order elements of S by (A,H) ≥ (B,G) if and only if A ⊇ B and
H ⊇ G.

Let (Aα, Hα) be a chain of elements in S. Then H := ∪αHα is a proper ideal
of the ring A := ∪αAα. So (A,H) is an upper bound. By Zorn’s lemma, S has a
maximal element, say (A,H).

Claim: A is a valuation domain.
Let A′ be the integral closure of A. Since A′ ⊇ A is a LO extension, A′ = A by

the maximality of A. Thus A is integrally closed.
Clearly A is a quasi-local ring with maximal ideal H since (AM , HM ) ≥ (A,H)

and hence (AM , HM ) = (A,H) by the maximality of (A,H), where M is a prime
ideal containing H. Let y be a nonzero element of K, the quotient field of both R
and A. We show that y or 1/y is in A. First note that y or 1/y is in W since W is
a valuation domain. Let x be y or 1/y, which is contained in W . Thus x ∈W .

Case 1: The unity 1 ∈ HA[x] = H[x].
Then 1 = h0 + h1x+ · · ·+ hnx

n and hence h1x+ · · ·+ hnx
n = 1− h0 is a unit

in A since A is a quasi-local ring. So 1/x is integral over A and hence 1/x is in A
since A is integrally closed. Hence y or 1/y is in A.

Case 2: The unity 1 6∈ HA[x] = H[x].
Note that A[x] ⊆ W since x ∈ W . Now (A[x], H[x]) ≥ (A,H) in S and hence

A[x] = A by the maximality of (A,H), whence x ∈ A. Thus x or 1/x is in A and
hence y or 1/y is in A.

Thus in either case, y or 1/y is in A so that A is a valuation domain. Now by
the definition of S, P ⊆ H ∩ R, and the reverse containment is obvious since R is
quasi-local. Hence P = H ∩R. �

Theorem 9. (1) Let P1 ⊆ · · · ⊆ Pn be a chain of prime ideals of an integral domain
R. Then there is a valuation overring V of R with prime ideals Q1 ⊆ · · · ⊆ Qn
lying over P1 ⊆ · · · ⊆ Pn, where Qn is the maximal ideal of V .

(2) Moreover, if P1 ⊆ · · · ⊆ Pn ⊆ Pn+1 is a chain of prime ideals of an integral
domain R and W is a valuation overring of R with prime ideals Q1 ⊆ · · · ⊆ Qn
lying over P1 ⊆ · · · ⊆ Pn, where Qn is the maximal ideal of W , then there exists
a valuation overring V ⊆ W of R with prime ideals Q1 ⊆ · · · ⊆ Qn ⊆ Qn+1 lying
over P1 ⊆ · · · ⊆ Pn ⊆ Pn+1, where Qn+1 is the maximal ideal of V .

Proof. We prove the theorem by induction on n. If P1 is a prime ideal of R, then
by Theorem ?? there exists a valuation overring (W,Q1) of R such that Q1 lies over
P1. Hence, (1) is true for n = 1.

Suppose that (1) is true for n. Let P1 ⊆ · · · ⊆ Pn ⊆ Pn+1 be a chain of
prime ideals of R and let W ⊇ R be a valuation overring of R with prime ideals
Q1 ⊆ · · · ⊆ Qn lying over P1 ⊆ · · · ⊆ Pn, where Qn is the maximal ideal of W .

By Theorem ?? with (R/Pn, Pn+1/Pn), there exists a valuation overring (V ′, Q′)
of R/Pn such that Q′∩R/Pn = Pn+1/Pn. Since W/Qn is the quotient field of R/Pn,
V ′ ⊆ W/Qn. Let V be the inverse image of V ′ under the canonical epimorphism
W → W/Qn. Then V is a valuation domain. Obviously, R ⊆ V ⊆ W . Let
Qn+1 be the maximal ideal of V . By Corollary ??, Spec(W ) ⊆ Spec(V ) so that
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Q1 ⊆ · · · ⊆ Qn ⊆ Qn+1 is a chain of prime ideals of V . Finally, the equality
Q′ ∩R/Pn = Pn+1/Pn implies Qn+1 ∩R = Pn+1. This proves (1) and also (2). �

Theorem 10. Let P1 ⊆ · · · ⊆ Pn ⊆ · · · be an ascending chain of prime ideals of
an integral domain R. Then there exists a valuation domain V ⊇ R with a chain
of prime ideals Q1 ⊆ · · · ⊆ Qn ⊆ · · · lying over P1 ⊆ · · · ⊆ Pn ⊆ · · · .

Proof. Using Theorem ??, we successively find a decreasing sequence of valuation
domains Vn and a sequence of prime ideals Q1 ⊆ · · · ⊆ Qn of Vn, which lies
over P1 ⊆ · · · ⊆ Pn. Put V = ∩∞n=1Vn. Then V is a valuation domain and
Q1 ⊆ · · · ⊆ Qn ⊆ · · · is contained in V by Corollary ??. �

If the chain (Pα)α∈Ω is not countable, then we cannot apply the inductive
method. We will present a method which does not appeal to the inductive method.

Let (Pα)α∈Ω be a chain of prime ideals of an integral domain R. We will find a
valuation domain V with a chain of prime ideals (Qα)α∈Ω lying over (Pα)α∈Ω.

Let
S =

⋃
α∈Ω

(R \ Pα)−1Pα.

Lemma 11. S is closed under multiplication and multiplication by elements of R.

Proof. It is an easy exercise. �

Lemma 12. 〈S〉 := SR[S] is a proper ideal of R[S].

Proof. Suppose not. Then 1 = s1 + · · · + sn by Lemma ??, where each si ∈
(R\Pi)−1Pi. Since (Pα)α∈Ω is a chain, we may assume that Pn ⊆ · · · ⊆ P1. Choose
a valuation domain V with prime ideals Qn ⊆ · · · ⊆ Q1 lying over Pn ⊆ · · · ⊆ P1.
Note that each si ∈ (R \ Pi)−1Pi ⊆ PiPi ⊆ QiQi = Qi. So 1 = s1 + · · ·+ sn ∈ Q1,
a contradiction. Thus 〈S〉 is a proper ideal of R[S]. �

We can now prove the following theorem, which is the main result in [?].

Theorem 13. Let (Pα)α∈Ω be a chain of prime ideals of an integral domain R.
Then there exists a valuation domain V with a chain of prime ideals (Qα)α∈Ω lying
over (Pα)α∈Ω.

Proof. Let P be a prime ideal of R[S] containing 〈S〉. Choose a valuation domain
(V,M) centered on P , i.e., M∩R[S] = P . Let Aα =

√
PαV , which is a prime ideal of

V . We claim that Aα∩R = Pα. Suppose Pα ⊂ Aα∩R and choose f ∈ (Aα∩R)\Pα.

Then fn ∈ pαV for some n ≥ 1 and pα ∈ Pα. Now fn

pα
∈ V , which implies pα

fn is a

unit, which however is in (R \ Pα)−1Pα ⊆ S ⊆ SR[S] ⊆ P ⊆ M , a contradiction.
Thus Pα = Aα ∩R for each α. �

Definition 14. (Going-up extension). Let D ⊇ R be a ring extension. It is a
going-up extension if given prime ideals P0 ⊆ P1 of R and a prime ideal Q0 of D
lying over P0, we can find a prime ideal Q1 ⊇ Q0 of D lying over P1.

Definition 15. (Generalized going-up extension). Let D ⊇ R be a ring extension.
It is a generalized going-up extension if for any chain P0 ⊆ (Pα)α∈Ω of prime ideals
of R and a prime ideal Q0 of D lying over P0, there exists a chain of prime ideals
(Qα)α∈Ω ⊇ Q0 of D lying over (Pα)α∈Ω.

Theorem 16. (Kang-Oh). GU implies GGU.
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Proof. The proof is basically the same as that of Theorem ??. �

Definition 17. (Going-down extension). Let D ⊇ R be a ring extension. It is a
going-down extension if given prime ideals P1 ⊆ P0 of R and a prime ideal Q0 of
D lying over P0, we can find a prime ideal Q1 ⊆ Q0 of D lying over P1.

Definition 18. (Generalized going-down extension). Let D ⊇ R be a ring exten-
sion. It is a generalized going-down extension if for any chain (Pα)α∈Ω ⊆ P0 of
prime ideals of R and a prime ideal Q0 of D lying over P0, there exists a chain of
prime ideals (Qα)α∈Ω ⊆ Q0 of D lying over (Pα)α∈Ω.

Theorem 19. GD implies GGD.

Proof. Use Hochster’s duality theorem: For a ring R, there is a ring R′ such that
Spec(R′) is reversely isomorphic to Spec(R) as posets. �

For more about LO, GU, and GD, we refer the readers to [?, ?].

Theorem 20. (Kang-Oh). Let D ⊇ R be a going-up extension. Then every tree
in Spec(R) can be embedded in a tree of Spec(D).

Proof. An ardous checking of all the cases will do the work. See [?]. �

Corollary 21. Let R be a Prüfer domain and let D be the integral closure of R in
any extension field of the quotient field of R. Then Spec(R) ↪→ Spec(D).

Remark 22. In the above case, both Spec(R) and Spec(D) are trees, one of which
is a subtree of the other.

Question 23. How many embeddings are there?

Theorem 24. (Kang-Oh). Let R be an integral domain. Then there exists a Bézout
domain D ⊇ R such that every tree T in Spec(R) is a contraction of a tree T ′ in
Spec(D).

Proof. Let D = (R′)b be the Kronecker function ring of the integral closure R′ of
R. It is well-known that D is a Bézout ring. The extensions R ⊆ R′ ⊆ (R′)b are
going-up extensions, and hence R ⊆ (R′)b is a going-up extension. �

The following is a result in [?].

Theorem 25. (Kang). Every tree can be embedded into the spectrum of a Prüfer
domain.
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