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In this talk we explore the analogy between factorization in integral domains and
direct-sum decompositions of modules. Also, we give examples of strange direct-
sum decompositions.

1. The analogy
sec:analogy

We begin by recalling some basic terminology and notation from factorization
theory.

def:factor-terminology Definition 1.1. Let D be a commutative integral domain.
(a) Let x, y ∈ D. We say that x divides y and write x | y provided there exists

z ∈ D such that xz = y.
(b) An element p ∈ D is irreducible provided p 6= 0, p is not a unit of D, and

p = xy =⇒ either x or y is a unit.
(c) An element p ∈ D is prime provided p 6= 0, p is not a unit of D, and

p | xy =⇒ p | x or p | y.
(d) We say elements x and y are associates, and we write x ∼ y, provided there

is a unit u of D such that ux = y.
(e) The domain D is a unique factorization domain (UFD) provided

(i) every non-zero non-unit of D can be expressed as a finite product of
irreducible elements; and

(ii) if p1 · · · pr = q1 · · · qs with each pi and each qj irreducible, then r = s
and, after renumbering, pi ∼ qi for each i.

ex:prime-irred Exercise 1.2. Prove that every prime element is irreducible. Assume that every
non-zero non-unit is a product of finitely many irreducible elements. Prove that R
is a UFD if and only if every irreducible element is prime.

eg:non-ufd Example 1.3. The standard example of a non-UFD is the ring Z[
√
−5] of integers

in the quadratic number field Q(
√
−5). In this domain the element 6 has two

factorizations: 2 · 3 = (1 +
√
−5) · (1 −

√
−5). (One has to check that all four

elements are irreducible and that 2 is not an associate of either element on the
righthand side of the equation.) There are easier examples: in the ring Q[t2, t3]
of polynomials with no linear term, the element t60 has factorizations of different
lengths (something that does not happen in the ring Z[

√
−5]): the elements t2 and

t3 are irreducible, and (t2)30 = (t3)20.

ex:irred-not-prime Exercise 1.4. In the domains Z[
√
−5] and Q[t2, t3], respectively, show that 2 and

t2 are not prime.
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notation:modules Notation 1.5. Now let R be a ring and C a non-empty class of R-modules closed
under finite direct sums, direct summands, and isomorphism. That is, if M , N , V
are R-modules with M ⊕N ∼= V , one has V ∈ C if and only if M ∈ C and N ∈ C.
Assume, moreover, that V(C), the collection of isomorphism classes of modules in
C, is a set (not a proper class). Thus, for example, C might be the class R-mod
of all finitely generated modules. The class R-Mod of all modules, however, would
not be allowed. We make V(C) into an additive semigroup using ⊕ as an operation:
letting [M ] denote the isomorphism class of M , we write [M ] + [N ] = [M ⊕ N ].
The (additive) identity element is of course [0], and this is the only unit of V (C),
since M ⊕N ∼= 0 =⇒ M ∼= N ∼= 0. Therefore the analog of “associates” is pretty
boring: equality in V (C) and isomorphism in C.

Here are the module-theoretic analogs of the concepts (other than (d)) in Def-
inition ??. (The terminology is somewhat different, since the terms “irreducible
module” and “prime module” have been usurped and mean something quite differ-
ent and irrelevant to our discussion.)

def:module-terminology Definition 1.6. Let R and C be as in Notation ??.
(a) Let X,Y ∈ C. We say that X divides Y and write X | Y provided there

exists Z ∈ C such that X ⊕ Z ∼= Y .
(b) A module P ∈ C is indecomposable provided P ∼= X ⊕ Y (with X,Y ∈ C),

implies X = 0 or Y = 0.
(c) A module P ∈ C is prime-like provided P | X ⊕ Y (with X,Y ∈ C) implies

P | X or P | Y .
(e) The class C has the Krull-Remak-Schmidt property (KRS) provided

(i) every non-zero element of C can be expressed as a finite direct sum of
indecomposable modules; and

(ii) if P1 · · ·Pr
∼= Q1 · · ·Qs with each Pi and each Qj indecomposable, then

r = s and, after renumbering, Pi
∼= Qi for each i.

ex:prime-like-indec Exercise 1.7. State the analog of Exercise ??, and do it.

2. Failure of KRS
sec:not-KRS

Assumption 2.1. Assume from now on that R is a commutative Noetherian ring
and that C ⊆ R-mod. Now every element of C is a direct sum of finitely many
indecomposable elements of C. (Exercise: Prove this.)

Here is a family of examples where KRS fails (see [?, Example 2.3]).

Example 2.2. Let R be an integral domain with two non-principal ideals I and
J satisfying I + J = R. (For example, take R = Q[x, y], and let I and J be the
maximal ideals Rx+Ry and Rx+R(y − 1).) Then

I ⊕ J ∼= R⊕ (I ∩ J).

All four modules are indecomposable, neither I nor J is isomorphic to R.

That’s too easy, and the reason is that the ring R above has more than one
maximal ideal. For this reason we will assume from now on that R is a local ring,
that is, a Noetherian ring just one maximal ideal m. Now cancellation holds [?],
that is, M ⊕ X ∼= M ⊕ Y =⇒ X ∼= Y . (Recall that we are assuming C ⊆ R-
mod, that is, all modules under consideration are finitely generated. Without this
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assumption there are trivial counterexamples to cancellation: take, for example, M
to be a free module of infinite rank, let X = 0, and let Y = R.)

Even with these restrictions (finitely generated modules over a local ring), the
semigroup V(R-mod) is too large to to allow a reasonable description, except in
very special cases (for example, when R is a principal ideal ring). We will focus on
a small piece of R-mod. Fix a finitely generated module M , and let addM denote
the set of isomorphism classes of direct summands of direct sums of finitely many
copies of M . Thus [X] ∈ addM if and only if there exist Y ∈ R-mod) and n ∈ N
such that X ⊕ Y ∼= M (n).

3. Diophantine semigroups: Realization
sec:Diophantine

def:diophantine Definition 3.1. An additive semigroup H is Diophantine provided there exist pos-

itive integers n and t and an n × t integer matrix ϕ such that H ∼= (kerϕ) ∩ N(t)
0 .

Thus H is the set of non-negative integer solutions to n homogeneous linear equa-
tions in t variables.

The next two theorems were proved in my 2001 paper [?]. The second “realiza-
tion theorem” is the more difficult of the two.

thm:diophantine Theorem 3.2. Let R be a Noetherian local ring, and let M be a finitely generated
R-module. Then addM is a Diophantine semigroup.

thm:realization Theorem 3.3. Let H be a Diophantine semigroup, say H = (kerϕ)∩N(t)
0 , where ϕ

is an n× t integer matrix. Assume that H has an “order-unit”, that is, an element

α =

[
a1

...
at

]
∈ H with ai > 0 for each i. Then there exist a local domain R, a finitely

generated torsion-free R-module M , and a semigroup isomorphism H ∼= addM ,
taking α to [M ].

ex:order Exercise 3.4. Using the representation H = (kerϕ) ∩ N(t)
0 , we have H embedded

in N(t)
0 , which we endow with the product partial ordering:

[
a1

...
at

]
≤

[
b1
...
bt

]
⇐⇒

ai ≤ bi for each i. Prove that α | β (i.e., there exists γ ∈ H such that α + γ = β)

if and only if α ≤ β in N(t)
0 .

ex:order-unit Exercise 3.5. Let H be any non-zero Diophantine semigroup, say H = (kerϕ) ∩

N(t)
0 , where ϕ is an n × t integer matrix. Choose an element α =

[
a1

...
at

]
with the

maximum number of positive coordinates. We may assume, without changing the
isomorphism class of H, that a1, . . . , as are positive and as+1 = · · · = at = 0. Show

that if β =

[
b1
...
bt

]
is an arbitrary element of H, then bs+1 = · · · = bt = 0. Deduce

that H ∼= (kerψ) ∩ N(s)
0 , where ψ is the n × s matrix obtained from ϕ by deleting

the last t − s columns. Moreover, (kerψ) ∩ N(s)
0 has an order-unit, namely, the

column vector obtained from α by deleting the t − s zeroes at the bottom. Thus,
up to isomorphism, the assumption that H contains an order-unit is no restriction.

The first counterexamples to KRS in the local case were due to Swan in the
sixties (see [?]). The key idea in Swan’s example is that the integral closure of a
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local domain need not be local. The argument in the realization theorem above uses
this same idea, together with a delicate construction of indecomposable modules
over the completion (which I will talk about in my next lecture).

The local domain R in Theorem ?? is easy to describe, though finding the req-
uisite module is much more difficult. Fix a Diophantine semigroup H as in the
theorem. The number n (the number of defining equations) in the theorem plays a
key role. Let k be any field with at least n+1 elements, and let c0, . . . , cn be distinct
elements of k. Let k(x) be the ring of rational functions (quotients of polynomi-
als) in one variable, and let R be the subring of k(x) consisting of those rational

functions f(x) = p(x)
q(x) (here p(x) and q(x) are polynomials) such that

(a) f(x) is defined at each ci (that is, q(c0), . . . , q(cn) are all non-zero),
(b) f(c0) = · · · = f(cn), and
(c) the first, second, and third derivatives f ′(x), f ′′(x), and f ′′′(x) all vanish at

each ci.
Then R is a local domain, and there is a finitely generated torsion-free R module

M such that addM ∼= H. One might hope to find a single local that can accom-
modate all Diophantine semigroups, but in fact the dependence on the number of
defining equations is essential. Karl Kattchee [?] has shown that there is no fixed
local ring over which every Diophantine semigroup can be realized.

Thanks to the realization theorem, if we want to find silly direct-sum decompo-
sitions, all we have to do is to find semigroups with silly decompositions into atoms.
(An atom of a Diophantine semigroup is a non-zero element α with the property
that α = β + γ =⇒ β = 0 or γ = 0.) Of course, if we have an isomorphism
between addM and H, the indecomposable modules in addM correspond to the
atoms of H.

Here is an example of behavior similar to that of the ring Z[
√
−5] in Example ??:

ex:quad Exercise 3.6. Let H = {
[
a
b
c
d

]
∈ N(4)

0 | a + b = c + d}, a Diophantine semigroup

defined by one equation. Show that H has exactly four atoms, namely:

α :=

[
1
0
1
0

]
β :=

[
0
1
0
1

]
γ :=

[
1
0
0
1

]
δ :=

[
0
1
1
0

]
We have the obvious relation α + β = γ + δ. By the realization theorem, there is
a local domain R with pairwise non-isomorphic indecomposable finitely generated
modules A,B,C,D satisfying the relation A⊕B ∼= C ⊕D.

We can get much worse behavior:

ex:83 Exercise 3.7. Let H = {
[
a
b
c

]
∈ N(3)

0 | a + 82b = 83c}. Show that H has exactly

three atoms, namely:

α :=
[
1
1
1

]
β :=

[
83
0
1

]
γ :=

[
0
83
82

]
These satisfy the obvious relation β+γ = 83α. By the realization theorem, there is a
local ring with pairwise non-isomorphic indecomposable modules A,B,C satisfying
the relation B⊕C ∼= A(83). An innocent bystander looking at direct sums of copies
of A would notice that A(2), A(3), ..., A(82) have only the obvious decompositions
into direct sums of indecomposables. Then all of a sudden A(83) comes along with
a decomposition as a direct sum of just two indecomposables!
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In each of these examples, the Diophantine semigroup is defined by just one
equation and hence can be realized over the subring of k(x) consisting of rational
functions f such that f(0) = f(1) and whose first three derivatives vanish at 0 and
1. Semigroups with more than one defining equation can exhibit even more bizarre
behavior. See [?] for more examples of silly direct-sum behavior.

Can we find modules over a local ring that emulate the two factorizations of t60

in Example ??? That is, are there finitely generated indecomposable modules A
and B over a local ring, such that A(30) ∼= B(20). If there were such modules, then,
by Theorem ??, we would have a Diophantine semigroup H with distinct atoms a
and b such that 30a = 20b. As in Exercise ??, we have H ↪→ N(t). The relation
obviously implies that a ≤ b (in the product partial ordering on N(t)). But this
means that a | b in H, an obvious contradiction. Thus such a relation is not possible
in the context of modules!

Please consult the expository paper [?] for a leisurely, reasonably self-contained
presentation of many of the ideas discussed in this talk.
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