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In this talk I will introduce local rings (mostly commutative) and, through lo-
calization, show how they can be used in commutative algebra.

1. Terminology
sec:terminology

For many people working in commutative algebra, particularly ideal theory of
integral domains, a local ring is simply a commutative ring with exactly one max-
imal ideal. (Thus the zero ring is not local.) For people working on rings related
to number theory and algebraic geometry, however, local rings are assumed to be
Noetherian, and “quasi-local” is used for commutative rings that may not be Noe-
therian. What about non-commutative rings? There, “local” means that the sum
of any two non-units is again a non-unit. In order to avoid a collision of terminol-
ogy, we will use the term “nc-local” when non-commutativity is allowed, reserving
the term “local” for commutative Noetherian rings. To summarize:

def:local-terminology Definition 1.1. Let R be a ring (always with identity!)
(a) R is nc-local provided R 6= 0 and the sum of any two non-units is again a

non-unit.
(b) R is quasi-local provided R is commutative and has exactly one maximal

ideal.
(c) R is local provided R is quasi-local and Noetherian.

ex:local Exercise 1.2. Prove that in an nc-local ring R the set J of non-units is exactly
the Jacobson radical J(R). Show that a ring A is nc-local if and only if A/J(A)
is a division ring. Prove that a commutative ring is quasi-local if and only if it is
nc-local.

2. Localization

Let R be an arbitrary commutative ring, and let S be a multiplicative set, that
is, a subset of R closed under multiplication and containing 1. (Some people omit
the requirement that 1 ∈ S, and, as it turns out, this doesn’t matter much, as long
as S 6= ∅.) Let M be any R-module (always assumed to be unital, that is, 1x = x
for each x ∈M). Define an equivalence relation ∼ on M × S as follows:

(x, s) ∼ (y, t) ⇐⇒ ∃u ∈ S such that u(tx− sy) = 0

(Prove that this is indeed an equivalence relation.) As one does in constructing the
rational numbers from the integers, we let x

s denote the equivalence class of the

pair (x, s). We make the set S−1M of equivalence classes x
s into an abelian group

in the obvious way: x
s + y

t = tx+sy
st . Moreover, S−1R is a commutative ring with
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the multiplication a
s
b
t = ab

st , and S−1M is an S−1R-module: a
s
x
t = ax

st . (Prove that
these operations are well-defined and do indeed provide rings and modules.) These
gadgets are called the ring of fractions of R with respect to S, and the module of
fractions of M with respect to S.

Suppose A
f→ B is a homomorphism of R-modules. Show that we get a homo-

morphism S−1f : S−1A → S−1B of S−1R-modules by sending a
s to f(a)

s . Tak-
ing modules of fractions is a functor; in particular, if we have R-homomorphisms

A
f→ B

g→ C, then S−1(gf) = (S−1g)(S−1f).
One of the most important examples of a multiplicative set is the set-theoretic

complement of a prime ideal. More generally, let P be any set of prime ideals of R;
then S := R \

⋃
P is a multiplicative set. When P is a prime ideal of R, we usually

write RP and MP instead of (R \ P )−1R and (R \ P )−1M . For a homomorphism
f , we write fP instead of (R \ P )−1f . We refer to RP and MP as the localization
of R (respectively M) at P .

3. Exactness

Recall that a sequence A
f→ B

g→ C is exact provided im f = ker g. Taking
modules of fractions is an exact functor:

ex:exact Exercise 3.1. Let S be a multiplicative subset of R, and let A
f→ B

g→ C be an

exact sequence of R-modules. Prove that S−1A
S−1f−→ S−1B

S−1g−→ S−1C is exact.

Example 3.2. Let k be a field and R = k[x1, . . . , xn] the polynomial ring in n
variables over k. Let p ∈ kn, say, p = (a1, . . . , an), with each ai ∈ k. Then
mp := {f ∈ R | f(p) = 0} is a maximal ideal of R, and Rm is the ring of rational
functions f = r

s , where r, s ∈ R and s(p) 6= 0. Thus Rm is the ring of rational
functions that are defined at p. (Exercise: Show that the ideal mp is generated by
the elements x1 − a1, . . . , xn − an.)

4. Globalization

The gist of the following theorem is that if a module is zero locally then it is
really zero. First of all, when is an element x

s in S−1M equal to zero? Answer:
x
s = 0

1 if and only if there is an element t ∈ S such that tx = 0.

thm:globalization Theorem 4.1. Let R be a commutative ring and A an R-module. These are equiv-
alent:

(a) A = 0.
(b) S−1A = 0 for every multiplicative set S in R.
(c) AP = 0 for every prime ideal P of R.
(d) Am = 0 for every maximal ideal m of R.

The only non-trivial implication is that (d) =⇒ (a). If A 6= 0, choose a non-zero
element x of A, and let I = {r ∈ R | rx = 0}, the annihilator of x. Then I is a
proper ideal of R (since 1 /∈ I), and Zorn’s lemma implies that there is a maximal
ideal m containing I. Thus nothing outside m annihilates x

1 , and so x
1 is a non-zero

element of Am.

cor:exact-global Corollary 4.2. Let A
f→ B be a homomorphism of R-modules, where R is a com-

mutative ring.
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(a) f is injective if and only if fm is injective for every maximal ideal m of R.
(b) f is surjective if and only if fm is surjective for every maximal ideal m of R.
(c) f is an isomorphism if and only if fm is an isomorphism for every maximal

ideal m of R.

Proof. Notice that f is injective if and only if 0 → A
f→ B is exact. Therefore,

if f is injective, so is fm, by Exercise ??. For the converse, let K = ker f . Then

0 → K
⊆−→ A

f→ B is exact, and, by Exercise ??, so is 0 → Km
⊆−→ Am

fm→ Bm

for each maximal ideal m. Injectivity of fm forces Km = 0 for each m, and now
Theorem ?? implies that K = 0, that is, f is injective. This proves (a). The proof

of (b) is similar; use the cokernel C and the exact sequence A
f→ B → C → 0. Of

course (c) follows from (a) and (b). �

Warning: This does not say that locally isomorphic modules are actually iso-
morphic. That is, one can have non-isomorphic modules A and B such that
Am
∼= Bm for each maximal ideal m. Without such examples, number theory

and algebraic topology would be uttterly boring: The ring Z[
√
−5] would be a

UFD, Fermat’s Last Theorem would have been proved two centuries ago, all vector
bundles would be trivial, there would be no Moebius band, ... .

5. Ideals of a ring of fractions

Let R be a commutative ring and S a multiplicative set. There is an obvious
ring homomorphism ϕ : R→ S−1R taking a to a

1 . (Funny people who don’t insist
that 1 ∈ S just choose any element s ∈ S and take a to sa

s . This works fine, and it
doesn’t matter which element s is chosen.) We have inclusion-preserving mappings

{ideals of R} σ−→ {ideals of S−1R}
{ideals of R} τ←− {ideals of S−1R}

given by σ(I) = S−1I and τ(J) = ϕ−1J , when I is an ideal of R and J is an ideal
of S−1R.

ex:ideals Exercise 5.1. Check that σ(τ(J)) = J for every ideal J of S−1R. (In particular,
σ is surjective and τ is injective. Thus, for example, S−1R is Noetherian if R
is Noetherian.) Show that τ(σ(I)) = {r ∈ R | sr ∈ I for some s ∈ S}. Show
that σ and τ give reciprocal bijections between {Q ∈ SpecR | Q ∩ S = ∅} and
SpecS−1R. (Here SpecA denotes the set of prime ideals of a commutative ring
A.) In particular, if P is a prime ideal of R, then SpecRP can be identified with
{Q ∈ SpecR | Q ⊆ P}. Therefore RP is a local ring with maximal ideal PP . But
that looks sort of dumb, so we write, instead, PRP for the maximal ideal of RP .

6. Completion
sec:completion

Let R be a local ring with maximal ideal m. (Remember: local rings are com-
mutative and Noetherian.) Let M be a finitely generated R-module. The Krull
Intersection Theorem (see [?, Theorem 8.10]) states that

⋂∞
n=1 m

nM = 0. Thus, if x
and y are distinct elements of M , there is a largest integer n for which x−y ∈ mnM ,
and we define d(x, y), the distance between x and y, to be 2−n. Defining d(x, x) = 0,
we make M into a metric space. (Exercise: Check this!) Borrowing terminology
from basic analysis, we say that M is complete provided every Cauchy sequence
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sequence in M converges. If R is complete, one can show that every finitely gen-
erated R-module M is also complete. (Prove this, filling in the details of the proof
of [?, Proposition 2.9].)

Now, given an arbitrary local ring R and a finitely generated R-module M , one

can form their completions R̂ and M̂ and show easily that R̂ has a natural structure

of quasi-local ring with maximal ideal m̂, and that M̂ is a finitely generated R̂-

module. In fact (and this is far from trivial), it turns out that R̂ is Noetherian, i.e.,
it’s a complete local ring.

For our purposes, the wonderful thing about complete local rings is that their
finitely generated modules satisfy KRS (as in my previous talk). That is, every
finitely generated module over a complete local ring is uniquely (up to isomorphism
and permutation of the summands) a direct sum of indecomposable modules. This
was first proved by Swan in the 1960s. The proof is not easy, but an almost self-
contained proof can be found in [?]. The results discussed in my previous talk (on

silly direct-sum decompositions) depend on an analysis of the map [M ] 7→ [M̂ ] from

R-mod to R̂-mod. It is well-known that this map is injective, that is, two finitely
generated R-modules that become isomorphic after completion must already be
isomorphic. One needs, however, a much stronger result: If M and N are finitely

generated R-modules and M̂ | N̂ , then M | N . (Recall: “M | N” means “M is
isomorphic to a direct summand of N”.) This is one of the main ingredients in
the proof that addM is Diophantine. The proof of the realization theorem uses
these ideas, together with a very technical construction of indecomposable finitely
generated modules over the completion. We refer the interested reader to [?, (2.3)
and (2.4)] for the details. For an exposition of all of the details except this technical
construction, and for many of the other things I have talked about today, please
consult the expository paper [?].
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