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Toward the end of the 19th Century, David Hilbert did groundbreaking work
that has had a profound and lasting effect on many areas of mathematics. Here we
focus on two of his famous theorems, the Hilbert Basis Theorem and the Syzygy
Theorem, which are indispensable tools in modern algebra and algebraic geometry.

1. The Hilbert Basis Theorem
sec:HBT

For simplicity, we work throughout with commutative rings, even though some
results hold more generally.

thm:HBT Theorem 1.1. Let k be a field, and let x1, . . . , xn be indeterminates. Then every
ideal in the polynomial ring k[x1, . . . , xn] is finitely generated.

About thirty years after Hilbert’s proof, Emmy Noether observed that a com-
mutative ring R has the property that every ideal is finitely generated if and only
if R has the ascending chain condition (ACC) on ideals, that is, there is no infinite
strictly ascending chain

I1 ⊂ I2 ⊂ I3 ⊂ . . .
of ideals in R. Equivalently, for every ascending chain

I1 ⊆ I2 ⊆ I3 ⊆ . . . ,
there is an integer N such that IN = IN+1 = IN+2 = . . . . Rings with these
equivalent properties are now known as Noetherian rings.

exc:ACC Exercise 1.2. Prove that a commutative ring R has ACC if and only if every ideal
of R is finitely generated.

Theorem ?? is an immediate consequence of the following more general result:

thm:HBTind Theorem 1.3. Let R be a commutative Noetherian ring. Then the polynomial ring
R[x] is Noetherian.

There are many proofs of this theorem in the literature. Typically, they involve
both the finite generation property and the ascending chain condition. Here is a
typical proof:

Proof of Theorem ??. Let J be an ideal of R[x]. We’ll find a finite set of generators
for J . For each n ≥ 0, let Ln be the set of elements b ∈ R such that b is the leading
coefficient of some non-zero polynomial f ∈ J with deg f ≤ n}. Check easily that
In := Ln ∪ {0} is an ideal of R and that In ⊆ In+1 for each n ≥ 0. Since R is
Noetherian there is an integer N such that IN = IN+1 = IN+2 = . . . .
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For each n ≤ N , choose a generating set {bn1, . . . , bnt} for In, choose polynomials
fnj = bnjx

pnj + lower-degree terms, with fnj ∈ J and pnj ≤ n. (We allow the
possibility that fnj = bnj = 0. This is necessary, since Ln may be empty for small
values of n.) We claim that J is generated by the (N + 1)t elements fnj . If not,
let f be an element of least degree in J but outside the ideal (fnj) generated by
the fnj . We shall obtain a contradiction. Write f = cxd + lower-degree terms, with
c 6= 0.

Case 1: d ≤ N . Since c ∈ Id, we can write c = r1bd1 + . . . rtbdt, where the
coefficients rj are in R. Put g = r1fd1 + · · · + rtfdt. Notice that g = cxd +
lower-degree terms, so deg(f − g) < d (the leading terms cancel). Now g ∈ (fnj) ⊆
J , and it follows that f−g is in J but outside (fnj). This contradicts the minimality
of deg f .

Case 2: d > N . Then c ∈ Id = IN , and we write c = r1bN1 + . . . rtbNt. Put
g = r1x

d−pN1fN1+· · ·+rtxd−pNtfNt. Again, we have g = cxd+lower-degree terms,
so deg(f − g) < d, and we obtain a contradiction as before. �

2. Noetherian modules

An R-module M is said to be Noetherian provided M has ACC on submodules.
As in Exercise ?? one checks that M is Noetherian if and only if every submodule
is finitely generated. The ring R is Noetherian if and only if it is Noetherian as an
R-module.

exc:SES Exercise 2.1. Suppose 0→ U → V →W → 0 is an exact sequence of R-modules.
Then V is Noetherian if and only if both U and W are Noetherian.

For any positive integer n, there is an exact sequence

0→ R→ Rn+1 → Rn → 0 .

It follows (by induction) that if R is a Noetherian ring then Rn is a Noetherian
module for every n. Now, given a finitely generated module M , with generators
x1, . . . , xn, there is an exact sequence

eq:syzeq:syz (2.1) 0→ K → Rn →M → 0 ,

where the map Rn → M take the standard basis element ei to xi, and K is the
kernel of this map. This proves:

prop:NoethMod Proposition 2.2. Every finitely generated module over a Noetherian ring is a Noe-
therian module.

3. Hilbert’s Syzygy Theorem

The word “basis” in the name “Hilbert Basis Theorem” is misleading. A set
of generators for an ideal is classically referred to as a “basis”, though in modern
terminology the word “basis” means something much stronger: It’s a linearly in-
dependent set of generators for the ideal. Notice that a non-principal ideal in a
commutative ring cannot have a basis: Any two non-zero elements f and g of an
ideal satisfy the non-trivial dependence relation

eq:SyzReleq:SyzRel (3.1) (−g) · f + f · g = 0 .
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Incidentally, a polynomial ring in more than one variable always has non-principal
ideals, in fact, ideals requiring arbitrarily (but finitely!) many generators. For ex-
ample, in the polynomial ring C[x, y], the ideal I := (xn, xn−1y, . . . , xyn−1, yn)
cannot be generated by fewer than n+ 1 generators.

exc:BigIdeal Exercise 3.1. Prove this! (Hint: Let m = (x, y). If I could be generated by
fewer than n + 1 elements, so could I/mI. Show that I/mI is a C-vector space of
dimension n+ 1, to obtain a contradiction.)

Equation (??) is an example of a syzygy relation, that is, a linear relation among
generators of a module (in this case the ideal (f, g)). Now let R be a commu-
tative Noetherian ring and M a finitely generated R-module, with generating set
{f1, . . . , fn}. As in Equation (??), we have an exact sequence

0→ K → Rn ε→M → 0 ,

where K is the kernel of the map ε : ei 7→ fi, i = 1, . . . , n. Here

ei =


0
...
1
...
0

← i and K = {

r1...
rn

 ∈ Rn | r1f1 + . . . rnfn = 0} .

Elements of K are called “syzygies of M”, and the module K is called the “first
syzygy of M” (with respect to the given presentation ε : Rn �M) and is denoted

SyzR1 M . The notation is somewhat imprecise, as the module depends on the pre-

sentation. Fortunately, SyzR1 M is well defined “up to free summands”. Indeed,
Schanuel’s Lemma states:

prop:Schanuel Proposition 3.2. Let

0→ K → F →M → 0 and 0→ L→ G→M → 0

be exact sequences, in which both F and G are projective modules. Then K ⊕G ∼=
L⊕ F .

We can take syzygies of syzygies, and so on: Let Syz2(M) = Syz1(Syz1(M)),
and, in general, Syzn+1(M) = Syz1(Syzn(M)). Do we eventually get a free module

as an nth syzygy?

eg:Koszul2 Example 3.3. Let R = k[x, y], where k is a field, and let M = R/(x, y) ∼= k.
Obviously Syz1M is the ideal (x, y). Let us compute Syz2M = Syz1(x, y). We
have the exact sequence

0→ Syz2M → R2 → (x, y)→ 0 ,

where the map R2 → (x, y) takes [ 10 ] to x and [ 01 ] to y. As in Equation (??), we
have [ −y

x ] ∈ Syz2M . In fact, Syz2(x, y) is generated by [ −y
x ] and hence is a free

module (of rank one). To see this, suppose
[
f
g

]
∈ Syz1(x, y). Then xf + yg = 0, so

x | yg. Since R is a unique factorization domain and x and y are relatively prime,
it follows that x | g, say, g = xh. Now xf + yxh = 0, so f + yh = 0. Therefore[
f
g

]
= h [ −y

x ].
The following exact sequence (a free resolution of M), encodes all of this infor-

mation:

0←M ← R
[ x y ]←− R2 [−y

x ]
←− R← 0 .
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I arranged the maps from right to left in order to make matrix multiplication (rep-
resenting composition of maps) more transparent. The first syzygy is the image of
[ x y ], and the second syzygy is the image of [ −y

x ]. The condition that we eventually
get a free module as an nth syzygy amounts to the condition that M has a finite
free resolution.

eg:Koszul3 Example 3.4. Let R = k[x, y, z], and let M = R/(x, y, z) ∼= k. Again, we get a
free resolution, this time of length three:

0←M ← R
[ x y z ]←− R3

[
0 −z y
z 0 −x
−y x 0

]
←− R3

[
x
y
z

]
←− R← 0 .

The third syzygy Syz3M is a free module.

Of course the modules M in the examples above are in some sense the simplest
interesting R-modules. The remarkable thing is that similar behavior is exhibited
by every module over a polynomial ring, in any number of variables.

Here is a modern version of Hilbert’s Syzygy Theorem:

thm:HST Theorem 3.5. Let M be a finitely generated module over the polynomial ring
k[x1, . . . , xn] over a field k. Then M has a free resolution of length at most n,
that is, there is an exact sequence

0←M ← F0 ← F1 ← · · · ← Fm ← 0 .

in which each Fi is a free R-module and m ≤ n. In other words, SyzmM is free
for some m ≤ n.

Hilbert did not actually prove this; his proof applied only to graded modules.
The statement above includes the assertion that projective modules are free over
k[x1, . . . , xn]. This assertion was known as Serre’s Conjecture and inspired and
motivated two decades of deep and important discoveries. It was finally proved
independently by Quillen and Suslin in 1976.

We conclude with a couple of examples where none of the syzygies SyznM is
free, that is, the free resolution goes on forever. (In fact, this behavior is typical;
polynomial rings are very special in this regard.)

eg:4 Example 3.6. Let R = Z/(4), and let M = R/(2) ∼= Z/(2). The free resolution of
M is

0←M ← R
2← R

2← R
2← R← . . . .

eg:cusp Example 3.7. Let R = C[t2, t3], the ring of polynomials with no linear term, and
let M = R/(t2, t3) ∼= C. After one step, the free resolution of M becomes periodic
with period two:

0←M ← R
[ t2 t3 ]← R2

[
t3 −t4

−t2 t3

]
← R2

[
t3 t4

t2 t3

]
← R2

[
t3 −t4

−t2 t3

]
← R2

[
t3 t4

t2 t3

]
← R2 ← . . . .

In these examples the ranks of the free modules in the minimal resolutions are
bounded. Even this behavior is far from typical and, roughly speaking, happens
only when the ring is defined by a single equation. Over the ring k[t4, t5, t6], for
example, the ranks of the free modules in the minimal resolution of k grow linearly;
and over k[t3, t4, t5] they grow exponentially.

For more information on syzygies, see my paper [?].
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