HILBERT POLYNOMIALS OF MULTIGRADED FILTRATIONS OF IDEALS-II

PARANGAMA SARKAR
RESEARCH TALK
TRIBHUVAN UNIVERSITY
22 APRIL, 2015

Let (R, \mathfrak{m}) be a Cohen-Macaulay local ring of dimension $d \geq 1$ and I be an \mathfrak{m}-primary ideal of R.
(1) In 1979, S. Goto and Y. Shimoda [3] proved that $\mathcal{R}(I)=\bigoplus_{n \geq 0} I^{n}$ is CohenMacaulay if and only if the associated graded ring of $I, G(I)=\bigoplus_{n \geq 0} \frac{I^{n}}{I^{n+1}}$ is Cohen-Macaulay and the reduction number $r(I)$ is at most $d-1$.
(2) In 1988, C. Huneke and J. D. Sally [6] proved that if (R, \mathfrak{m}) is two-dimensional regular local ring and I is a complete \mathfrak{m}-primary ideal, then $\mathcal{R}(I)$ is CohenMacaulay.
(3) In 1991, J. K. Verma [14] generalized this result for several ideals and proved that, for \mathfrak{m}-primary complete ideals I_{1}, \ldots, I_{s} in a two-dimensional regular local ring $(R, \mathfrak{m}), \mathcal{R}\left(I_{1}, \ldots, I_{s}\right)$ is Cohen-Macaulay.
(4) M. Herrmann, E. Hyry, J. Ribbe and Z. Tang 4] proved that if (R, \mathfrak{m}) is a Noetherian local ring of dimension two, if I_{1}, \ldots, I_{s} are \mathfrak{m}-primary ideals of R and for $i \neq j$, the joint reduction number of the filtration $\left\{\underline{I}^{\underline{n}}\right\}_{\underline{n} \in \mathbb{Z}^{s}}$ of type $e_{i}+e_{j}\left(e_{i}=(0, \ldots, 1, \ldots, 0)\right.$ in \mathbb{Z}^{s} where 1 occurs at i th position) is zero, and if $\mathcal{R}\left(I_{1}, \ldots, I_{s-2}\right)$ is Cohen-Macaulay, then $\mathcal{R}\left(I_{1}, \ldots, I_{s}\right)$ is Cohen-Macaulay if and only if $\mathcal{R}\left(I_{1}, \ldots, I_{s-2}, I_{s-1}\right)$ and $\mathcal{R}\left(I_{1}, \ldots, I_{s-2}, I_{s}\right)$ are Cohen-Macaulay.
It is well known that, for all $n \gg 0$, the Hilbert function of an \mathfrak{m}-primary ideal I, $H_{I}(n)=\lambda\left(\frac{R}{I^{n}}\right)$ is the Hilbert polynomial

$$
P_{I}(n)=e_{0}(I)\binom{n+d-1}{d}-e_{1}(I)\binom{n+d-2}{d-1}+\cdots+(-1)^{d} e_{d}(I)
$$

In 1987, C. Huneke [5] and independently A. Ooishi [13], proved that

$$
e_{0}(I)-e_{1}(I)=\lambda\left(\frac{R}{I}\right) \text { if and only if } r(I) \leq 1
$$

In this case $H_{\underline{I}}(n)=P_{\underline{I}}(n)$ for all $n \geq 1$, for $j=2, \ldots, d, e_{j}(I)=0$ and $\mathcal{R}(I)$ is Cohen-Macaulay.
We unify all these results and study Cohen-Macaulayness of the Rees algebra of multigraded admissible filtrations .

[^0]
1. The Difference Formula

We prove a result analogous to the Grothendieck-Serre formula for $P_{\mathcal{F}}(\underline{n})-$ $H_{\mathcal{F}}(\underline{n})$ in terms of local cohomology modules of $\mathcal{R}^{\prime}(\mathcal{F})$. This generalizes results of Johnston-Verma 9], Blancafort [1], Jayanthan-Verma [7].
Proposition 1.1. Let S^{\prime} be a \mathbb{Z}^{s}-graded ring and $S=\bigoplus_{\underline{n} \in \mathbb{N}^{s}} S_{\underline{n}}^{\prime}$. Then $H_{S_{++}}^{i}\left(S^{\prime}\right) \cong$ $H_{S_{++}}^{i}(S)$ for all $i>1$ and the sequence

$$
0 \longrightarrow H_{S_{++}}^{0}(S) \longrightarrow H_{S_{++}}^{0}\left(S^{\prime}\right) \longrightarrow \frac{S^{\prime}}{S} \longrightarrow H_{S_{++}}^{1}(S) \longrightarrow H_{S_{++}}^{1}\left(S^{\prime}\right) \longrightarrow 0
$$

is exact.
Theorem 1.2. [11, Theorem 4.3] Let (R, \mathfrak{m}) be a Noetherian local ring of dimension $d \geq 1$ and I_{1}, \ldots, I_{s} be \mathfrak{m}-primary ideals of R. Let $\mathcal{F}=\{\mathcal{F}(\underline{n})\}_{\underline{n} \in \mathbb{Z}^{s}}$ be an \underline{I} admissible filtration of ideals in R. Then
(1) $\lambda_{R}\left(H_{\mathcal{R}(\underline{I})_{++}}^{i}\left(\mathcal{R}^{\prime}(\mathcal{F})\right)_{\underline{n}}\right)<\infty$ for all $i \geq 0$ and $\underline{n} \in \mathbb{Z}^{s}$.
(2) $P_{\mathcal{F}}(\underline{n})-H_{\mathcal{F}}(\underline{n})=\sum_{i \geq 0}(-1)^{i} \lambda\left(H_{\mathcal{R}(\underline{I})_{++}}^{i}\left(\mathcal{R}^{\prime}(\mathcal{F})\right)_{\underline{n}}\right)$ for all $\underline{n} \in \mathbb{Z}^{s}$.

2. Analogues of the Huneke-Ooishi Theorem

Let (R, \mathfrak{m}) be a Cohen-Macaulay local ring of dimension $d \geq 1$, and let I_{1}, \ldots, I_{s} be \mathfrak{m}-primary ideals of R. Let $\mathcal{F}=\{\mathcal{F}(\underline{n})\}_{\underline{n} \in \mathbb{Z}^{s}}$ be an \underline{I}-admissible filtration of ideals in R. Then
(1) the filtration $\mathcal{F}^{\Delta}=\{\mathcal{F}(n e)\}_{n \in \mathbb{Z}}$ is $I_{1} \cdots I_{s}$-admissible,
(2) the filtration $\mathcal{F}^{(i)}=\left\{\mathcal{F}\left(n e_{i}\right)\right\}_{n \in \mathbb{Z}}$ is I_{i}-admissible for all $i=1, \ldots, s$.

For the Hilbert polynomial of $\mathcal{F}^{(i)}$, we write

$$
P_{\mathcal{F}^{(i)}}(x)=e_{0}\left(\mathcal{F}^{(i)}\right)\binom{x+d-1}{d}-e_{1}\left(\mathcal{F}^{(i)}\right)\binom{x+d-2}{d-1}+\cdots+(-1)^{d} e_{d}\left(\mathcal{F}^{(i)}\right)
$$

Huneke-Ooishi Theorem 2.1. [11, Theorem 5.5] Let (R, \mathfrak{m}) be a Cohen-Macaulay local ring of dimension $d \geq 1$, and let I_{1}, \ldots, I_{s} be \mathfrak{m}-primary ideals of R. Let $\mathcal{F}=\{\mathcal{F}(\underline{n})\}_{\underline{n} \in \mathbb{Z}^{s}}$ be an \underline{I}-admissible filtration of ideals in R. Then for all $i=1, \ldots, s$,
(1) $e_{(d-1) e_{i}}(\mathcal{F}) \geq e_{1}\left(\mathcal{F}^{(i)}\right)$,
(2) $e\left(I_{i}\right)-e_{(d-1) e_{i}}(\mathcal{F}) \leq \lambda\left(R / \mathcal{F}\left(e_{i}\right)\right)$,
(3) $e\left(I_{i}\right)-e_{(d-1) e_{i}}(\mathcal{F})=\lambda\left(R / \mathcal{F}\left(e_{i}\right)\right)$ if and only if $r\left(\mathcal{F}^{(i)}\right) \leq 1$ and $e_{(d-1) e_{i}}(\mathcal{F})=$ $e_{1}\left(\mathcal{F}^{(i)}\right)$.

3. Local cohomology of $\mathcal{R}(\mathcal{F})$

Let (R, \mathfrak{m}) be a Cohen-Macaulay local ring of dimension two, let I, J be \mathfrak{m} primary ideals, and let $\mathcal{F}=\{\mathcal{F}(\underline{n})\}_{\underline{n} \in \mathbb{Z}^{2}}$ be an (I, J)-admissible filtration of ideals in R. Suppose $e_{e_{i}}(\mathcal{F})=e_{1}\left(\mathcal{F}^{(i)}\right)$ for $i=1,2$. Then we proved [11, Theorem 6.6] the following are equivalent:
(1) For every joint reduction (a, b) of \mathcal{F} of type $e,\left[H_{\left(a t_{1}, b t_{2}\right)}^{2}\left(\mathcal{R}^{\prime}(\mathcal{F})\right)\right]_{(0,0)}=0$,
(2) $e_{2}\left(\mathcal{F}^{\Delta}\right)=e_{2}\left(\mathcal{F}^{(1)}\right)+e_{2}\left(\mathcal{F}^{(2)}\right)$,
(3) the joint reduction number of \mathcal{F} of type e is zero.

The a-invariants of $\mathcal{R}(\mathcal{F})$ as $\mathcal{R}(\underline{I})$-modules defined by

$$
\begin{aligned}
& a^{1}(\mathcal{R}(\mathcal{F}))=\sup \left\{k \in \mathbb{Z} \mid\left[H_{\mathcal{M}}^{\operatorname{dim} \mathcal{R}(\mathcal{F})}(\mathcal{R}(\mathcal{F}))\right]_{(k, q)} \neq 0 \text { for some } q \in \mathbb{Z}\right\} \\
& a^{2}(\mathcal{R}(\mathcal{F}))=\sup \left\{k \in \mathbb{Z} \mid\left[H_{\mathcal{M}}^{\operatorname{dim} \mathcal{R}(\mathcal{F})}(\mathcal{R}(\mathcal{F}))\right]_{(p, k)} \neq 0 \text { for some } p \in \mathbb{Z}\right\}
\end{aligned}
$$

are -1 where \mathcal{M} is the maximal homogeneous ideal of $\mathcal{R}(\underline{I})$ [12].

4. Cohen-Macaulay Property of the Rees algebra

In this section we relate the Cohen-Macaulayness of the bigraded Rees algebra $\mathcal{R}(\mathcal{F})$ with Hilbert coefficients, reduction numbers and joint reduction numbers. Let I, J be \mathfrak{m}-primary ideals in a Cohen-Macaulay local ring (R, \mathfrak{m}) of dimension two with infinite residue field, and let \mathcal{F} be a \mathbb{Z}^{2}-graded (I, J)-admissible filtration of ideals in R. M. Herrmann, E. Hyry, J. Ribbe and Z. Tang [4] proved that, if R is a Cohen-Macaulay local ring and the joint reduction number of $\left\{I^{r} J^{s}\right\}_{r, s \in \mathbb{Z}}$ of type e is zero, then $\mathcal{R}(I, J)$ is Cohen-Macaulay if and only if $\mathcal{R}(I)$ and $\mathcal{R}(J)$ are Cohen-Macaulay. We showed that this is also valid for bigraded filtrations.

Theorem 4.1. [11, Theorem 7.1] Let (R, \mathfrak{m}) be a Cohen-Macaulay local ring of dimension two, I, J be \mathfrak{m}-primary ideals and $\mathcal{F}=\{\mathcal{F}(\underline{n})\}_{\underline{n} \in \mathbb{Z}^{2}}$ be an (I, J)-admissible filtration of ideals in R. If the joint reduction number of \mathcal{F} with respect to some joint reduction of type e is zero, then $\mathcal{R}(\mathcal{F})$ is Cohen-Macaulay if and only if $\mathcal{R}\left(\mathcal{F}^{(i)}\right)=\bigoplus_{n \geq 0} \mathcal{F}\left(n e_{i}\right) t^{n}$ is Cohen-Macaulay for all $i=1,2$.

Theorem 4.2. [11, Theorem 7.3] Let (R, \mathfrak{m}) be a Cohen-Macaulay local ring of dimension two, let I_{1}, I_{2} be \mathfrak{m}-primary ideals of R, and let $\mathcal{F}=\{\mathcal{F}(\underline{n})\}_{\underline{n} \in \mathbb{Z}^{2}}$ be an $\left(I_{1}, I_{2}\right)$-admissible filtration of ideals in R. Then the following statements are equivalent.
(1) $e\left(I_{1}\right)-e_{e_{1}}(\mathcal{F})=\lambda\left(R / \mathcal{F}^{(1)}\right)$ and $e\left(I_{2}\right)-e_{e_{2}}(\mathcal{F})=\lambda\left(R / \mathcal{F}^{(2)}\right)$,
(2) $r\left(\mathcal{F}^{(1)}\right), r\left(\mathcal{F}^{(2)}\right) \leq 1$ and the joint reduction number of \mathcal{F} of type e is zero,
(3) $P_{\mathcal{F}}(r, s)=H_{\mathcal{F}}(r, s)$ for all $r, s \geq 0$,
(4) $\mathcal{R}(\mathcal{F})$ is Cohen-Macaulay.

Proof. (1) $\Rightarrow(2):$ Fix $i \in\{1,2\}$. Since $e\left(I_{i}\right)-e_{e_{i}}(\mathcal{F})=\lambda\left(R / \mathcal{F}^{(i)}\right)$, we have $e_{e_{i}}(\mathcal{F})=e_{1}\left(\mathcal{F}^{(i)}\right)$ and $r\left(\mathcal{F}^{(i)}\right) \leq 1$. Then by [1, Theorem 4.3.6], $G\left(\mathcal{F}^{(i)}\right)$ is CohenMacaulay and $e_{2}\left(\mathcal{F}^{(i)}\right)=0$. Using [10, Proposition 3.23], we get $e_{2}\left(\mathcal{F}^{\Delta}\right)=0$. Thus joint reduction number of \mathcal{F} of type e is zero.
$(2) \Rightarrow(3)$: One can show that the joint reduction number of \mathcal{F} of type e is zero if and only if $\lambda(R / \mathcal{F}(r, s))=r \operatorname{se}(I \mid J)+\lambda(R / \mathcal{F}(r, 0))+\lambda(R / \mathcal{F}(0, s))$ for all $r, s \geq 1$. If $r=0$ or $s=0$ the above equation is still true.
Fix $i \in\{1,2\}$. Then $r\left(\mathcal{F}^{(i)}\right) \leq 1$ implies $P_{\mathcal{F}^{(i)}}(n)=\lambda\left(R / \mathcal{F}\left(n e_{i}\right)\right)$ for all $n \geq 0$. Therefore $\lambda(R / \mathcal{F}(r, s))=\operatorname{rse}\left(I_{1} \mid I_{2}\right)+P_{\mathcal{F}^{(1)}}(r)+P_{\mathcal{F}^{(2)}}(s)$ for all $r, s \geq 0$.
$(3) \Rightarrow(1) \Rightarrow(4):$ Since $P_{\mathcal{F}}(r, s)=\lambda(R / \mathcal{F}(r, s))$ for all $r, s \geq 0$, the conditions of
(1) are satisfied. Hence $r\left(\mathcal{F}^{(1)}\right), r\left(\mathcal{F}^{(2)}\right) \leq 1$, and the joint reduction number of \mathcal{F} of type e is zero. Thus $\mathcal{R}\left(\mathcal{F}^{(1)}\right)$ and $\mathcal{R}\left(\mathcal{F}^{(2)}\right)$ are Cohen-Macaulay, by [15, Theorem 2.3]. Hence $\mathcal{R}(\mathcal{F})$ is Cohen-Macaulay.
(4) $\Rightarrow(1)$: Since $\mathcal{R}(\mathcal{F})$ is Cohen-Macaulay and $a^{j}(\mathcal{R}(\mathcal{F}))=-1$ for all $j=$ 1,2 , we have $\left[H_{\mathcal{R}(I)++}^{i}(\mathcal{R}(\mathcal{F}))\right]_{(r, s)}=0$ for all $r, s \geq 0$ and $i=0,1,2$. Therefore $\left[H_{\mathcal{R}_{++}}^{i}\left(\mathcal{R}^{\prime}(\mathcal{F})\right)\right]_{(r, s)} \simeq\left[H_{\mathcal{R}_{++}}^{i}(\mathcal{R}(\mathcal{F}))\right]_{(r, s)}=0$ for all $r, s \geq 0$ and $i=0,1,2$. Therefore, by the Difference formula (1.2), we have $P_{\mathcal{F}}(r, s)=\lambda(R / \mathcal{F}(r, s))$ for
all $r, s \geq 0$. Taking $r=s=0,(r, s)=(1,0)$ and $(r, s)=(0,1)$ in the previous equality, we get the desired result.

The following examples are in 7.
Example 4.3. Let $A=\mathbb{C}[[x, y]]$. Consider the plane curve $f=y^{2}-x^{n}$ and $\mathfrak{m}=(x, y) A$. Let J be the Jacobian ideal of $f=0$ and $\mathcal{F}=\left\{\mathfrak{m}^{r} J^{s}\right\}_{r, s \in \mathbb{Z}}$. Then $r(J)=r(\mathfrak{m})=0, y \mathfrak{m}+x J=\mathfrak{m} J$ and $P_{\mathcal{F}}(r, s)=\binom{r+1}{2}+r s+(n-1)\binom{s+1}{2}$.
Example 4.4. Neither of the conditions in (1) of Theorem 4.2 can be dropped to get the conclusions (2) and (3). Let (R, \mathfrak{m}) be a regular local ring of dimension 2 . Let $\mathcal{F}=\left\{\mathfrak{m}^{r} I^{s}\right\}_{r, s \in \mathbb{Z}}$ where $\mathfrak{m}=(x, y)$ and $I=\left(x^{3}, x^{2} y^{4}, x y^{5}, y^{7}\right)$. Then $I \mathfrak{m}=x^{3} \mathfrak{m}+y I$. Using Macaulay $2[2], \lambda\left(\frac{R}{I}\right)=16$. The ideal $J=\left(x^{3}, y^{7}\right)$ is a minimal reduction of I and $J I^{2}=I^{3}$ but $J I \neq I^{2}$. The Hilbert polynomial of \mathcal{F} is $P_{\mathcal{F}}(r, s)=\binom{r+1}{2}+$ $3 r s+21\binom{s+1}{2}-6 s+1$ which shows $e(I)-e_{(0,1)}(\mathcal{F})=15<\lambda\left(\frac{R}{I}\right)$.
Example 4.5. Theorem 4.2 is not true for dimension greater than 2. Let $A=$ $k[[x, y, z]], I=\mathfrak{m}^{2}+(z), J=\left(x, y^{3}, z\right)$ and $\mathcal{F}=\left\{I^{r} J^{s}\right\}_{r, s \in \mathbb{Z}}$. Then $r(J)=0$, $\left(x^{2}, y^{2}, z\right)$ is a reduction of I with $r(I)=1$ and $I J=(x, z) I+y^{2} J=x I+\left(y^{2}, z\right) J$. By computations on Macaulay 2 [2], we get $\operatorname{depth}(\mathcal{R}(\mathcal{F}))<\operatorname{dim}(\mathcal{R}(\mathcal{F}))=5$. Therefore $\mathcal{R}(\mathcal{F})$ is not Cohen-Macaulay.

References

[1] C. Blancafort, Hilbert functions: Combinatorial and Homological aspects, Ph. D. Thesis, Universitat De Bercelona, (1997). 2,3
[2] D. R. Grayson, M. E. Stillman, Macaulay 2, a Software System for Research in Algebraic Geometry; available at http://www.math.uiuc.edu/Macaulay2. 4
[3] S. Goto and Y. Shimoda, On the Rees algebras of Cohen-Macaulay local rings, Lecture notes in Pure and Appl. Math., vol. 68, Marcel Dekker, New York, 1979, pp. 201-231. 1
[4] M. Herrmann, E. Hyry, J. Ribbe and Z. Tang, Reduction numbers and multiplicities of multigraded structures, J. Algebra 197 (1997), 311-341. 1, 3
[5] C. Huneke, Hilbert functions and symbolic powers, Michigan Math. J. 34 (1987), 293-318. 1 ,
[6] C. Huneke and J. D. Sally, Birational extensions in dimension two and integrally closed ideals, J. Algebra 115 (1988), 481-500. 1
[7] A. V. Jayanthan and J. K. Verma, Grothendieck-Serre formula and bigraded Cohen-Macaulay Rees algebras, J. Algebra 254 (2002), 1-20. 2,4
[8] A. V. Jayanthan, Hilbert coefficients and depth of Blow-up algebras, Ph. D. Thesis, Indian Institute of Technology Bombay, (2002).
[9] B. Johnston and J. K. Verma, Local cohomology of Rees algebras and Hilberts functions, Proc. Amer. Math. Soc. 123 (1) (1995), 1-10. 2
[10] T. Marley, Hilbert Functions of Ideals in Cohen-Macaulay Rings, Ph.D. Thesis, Purdue University, (1989). 3
[11] S. Masuti, P. Sarkar and J. K. Verma, Hilbert polynomials of multigraded filtrations of ideals, 2015, to appear in J. Algebra. 23
[12] S. K. Masuti, T. J. Puthenpurakal and J. K. Verma, Local Cohomology of Multi-Rees algebras with applications to joint reductions and complete ideals, Acta Mathematica Vietnamica (2015), in press. 3
[13] A. Ooishi, Δ-genera and arithmetic genera of commutative rings, Hiroshima Math. J. 17 (1987), 47-66. 1
[14] J. K. Verma, Joint reduction and Rees algebra, Math. Proc. Camb. Phil. Soc. 109 (1991). 1
[15] D. Q. Viet, A note on Cohen-Macaulayness of Rees algebras of filtrations, Comm. Algebra 21 (1993), 221-229. 3

[^0]: Date: September 15, 2016.

