HILBERT POLYNOMIALS OF MULTIGRADED FILTRATIONS OF IDEALS-I

PARANGAMA SARKAR PREPARATORY TALK TRIBHUVAN UNIVERSITY 21 APRIL, 2015

Let (R, \mathfrak{m}) be a Noetherian local ring and I be an ideal of R. A **Reduction** of an ideal I is an ideal $J \subseteq I$ such that $JI^n = I^{n+1}$ for some n. We say J is a **minimal** reduction of I if whenever $K \subseteq J$ and K is a reduction of I, then K = J. We define the reduction number of I with respect to J is

$$r_J(I) = \min\{m : JI^n = I^{n+1} \text{ for } n \ge m\}$$

and reduction number of I is

 $r(I) = \min\{r_J(I) : J \text{ is a minimal reduction of } I\}.$

Let I be an m-primary ideal of R. In [?], P. Samuel showed that for $n \gg 0$, the Hilbert function $H_I(n) = \lambda \left(\frac{R}{I^n}\right)$ coincides with a degree d polynomial

$$P_{I}(n) = e_{0}(I) \binom{n+d-1}{d} - e_{1}(I) \binom{n+d-2}{d-1} + \dots + (-1)^{d} e_{d}(I),$$

called the Hilbert polynomial of I. The coefficients $e_i(I)$ are integers, $e_0(I)$ is called the multiplicity of I and denoted by e(I). For any minimal reduction J of an mprimary ideal I, e(I) = e(J).

1. Multigraded filtrations

Let I_1, \ldots, I_s be \mathfrak{m} -primary ideals of R.

Definition 1.1. A set of ideals $\mathcal{F} = {\mathcal{F}(\underline{n})}_{\underline{n}\in\mathbb{Z}^s}$ is called a \mathbb{Z}^s -graded \underline{I} -filtration if for all $\underline{m}, \underline{n} \in \mathbb{Z}^s$, (i) $\mathcal{F}(\underline{n})\mathcal{F}(\underline{m}) \subseteq \mathcal{F}(\underline{n} + \underline{m})$, (ii) $\underline{I}^{\underline{n}} \subseteq \mathcal{F}(\underline{n})$ and if $\underline{m} \geq \underline{n}$, (iii) $\mathcal{F}(\underline{m}) \subseteq \mathcal{F}(\underline{n})$.

Let t_1, \ldots, t_s be indeterminates. For $\underline{n} \in \mathbb{Z}^s$, put $\underline{t}^{\underline{n}} = t_1^{n_1} \cdots t_s^{n_s}$ and denote the Rees ring of \mathcal{F} by $\mathcal{R}(\mathcal{F}) = \bigoplus_{\underline{n} \in \mathbb{N}^s} \mathcal{F}(\underline{n}) \underline{t}^{\underline{n}}$ and the extended Rees ring of \mathcal{F} by $\mathcal{R}'(\mathcal{F}) = \bigoplus_{\underline{n} \in \mathbb{Z}^s} \mathcal{F}(\underline{n}) \underline{t}^{\underline{n}}$. For $\underline{n} \in \mathbb{Z}^s$, we denote $\underline{n}^+ = (n_1^+, \ldots, n_s^+)$ where $n_i^+ = \max\{0, n_i\}$.

Definition 1.2. A \mathbb{Z}^s -graded filtration $\mathcal{F} = \{\mathcal{F}(\underline{n})\}_{\underline{n}\in\mathbb{Z}^s}$ of ideals in R is called an $\underline{I} = (I_1, \ldots, I_s)$ -admissible filtration if $\mathcal{F}(\underline{n}) = \mathcal{F}(\underline{n}^+)$ for all $\underline{n} \in \mathbb{Z}^s$ and $\mathcal{R}'(\mathcal{F})$ is a finite $\mathcal{R}'(\underline{I})$ -module.

Example 1.3. The filtration $\{I_1^{n_1} \cdots I_s^{n_s}\}_{n_i \in \mathbb{Z}}$ is an <u>I</u>-admissible filtration.

Date: September 15, 2016.

2. The Multigraded Hilbert function and polynomial

For an <u>I</u>-admissible filtration $\mathcal{F} = \{\mathcal{F}(\underline{n})\}_{\underline{n}\in\mathbb{Z}^s}$ of ideals in a local ring (R, \mathfrak{m}) of dimension d, D. Rees showed existence of a polynomial

$$P_{\mathcal{F}}(\underline{n}) = \sum_{\substack{\alpha = (\alpha_1, \dots, \alpha_s) \in \mathbb{N}^s \\ |\alpha| \le d}} (-1)^{d-|\alpha|} e_{\alpha}(\mathcal{F}) \binom{n_1 + \alpha_1 - 1}{\alpha_1} \cdots \binom{n_s + \alpha_s - 1}{\alpha_s}$$

of degree d which coincides with the **Hilbert function** $H_{\mathcal{F}}(\underline{n}) = \lambda \left(\frac{R}{\mathcal{F}(\underline{n})}\right)$ for all large \underline{n} [?]. The coefficients $e_{\alpha}(\mathcal{F})$ are integers and the coefficients $e_{\alpha}(\mathcal{F})$ where $\alpha_1 + \cdots + \alpha_s = d$ are called mixed multiplicities of \mathcal{F} . B. Teissier [?] proved the existence of the polynomial for the filtration $\{I_1^{n_1} \cdots I_s^{n_s}\}_{n_1,\ldots,n_s \in \mathbb{Z}}$. This was proved by P. B. Bhattacharya for the filtration $\{I_1^{n_1}I_2^{n_2}\}_{n_1,n_2 \in \mathbb{Z}}$ and s = 2 in [?].

3. JOINT REDUCTION OF MULTIGRADED FILTRATIONS

Rees [?] introduced the concept of joint reduction for the filtration $\{I_1^{n_1} \cdots I_s^{n_s}\}_{n_1,\dots,n_s \in \mathbb{Z}}$. A set of elements $\{x_1,\dots,x_d\}$ is a joint reduction of $\{I_1,\dots,I_d\}$ if $x_i \in I_i$ for each

$$i \text{ and } \sum_{i=1}^{i} x_i I_1^{n_1} \cdots I_i^{n_i-1} \cdots I_d^{n_d} = I_1^{n_1} \cdots I_d^{n_d} \text{ for some } (n_1, \dots, n_d) \in \mathbb{N}^d.$$

Note that if $I = I_1 = \cdots = I_d$ then a joint reduction is just a reduction of I.

Example 3.1. Let R = k[|x, y|], $I = (x, y^2)$ and $J = (x^2, y)$. Then $\{x, y\}$ is a joint reduction of (I, J) and yI + xJ = IJ.

Definition 3.2. We define the **joint reduction** of \mathcal{F} of type $\mathbf{q} = (q_1, \ldots, q_s) \in \mathbb{N}^s$ to be a collection of q_i elements $x_{i1}, \ldots, x_{iq_i} \in I_i$ for all $i = 1, \ldots, s$, such that $q_1 + \cdots + q_s = d$ and $\sum_{i=1}^s \sum_{j=1}^{q_i} x_{ij} \mathcal{F}(\underline{n} - e_i) = \mathcal{F}(\underline{n})$ for all large $\underline{n} \in \mathbb{N}^s$.

Definition 3.3. We say the **joint reduction number** of \mathcal{F} with respect to a joint reduction $\{x_{ij} \in I_i : j = 1, ..., q_i; i = 1, ..., s\}$ of type **q** is zero if

$$\sum_{i=1}^{s} \sum_{j=1}^{q_i} x_{ij} \mathcal{F}(\underline{n} - e_i) = \mathcal{F}(\underline{n}) \text{ for all } \underline{n} \ge \sum_{i \in A} e_i, \text{ where } A = \{i | q_i \neq 0\},\$$

and the joint reduction number of \mathcal{F} of type **q** is zero if the joint reduction number of \mathcal{F} with respect to every joint reduction of type **q** is zero.

4. LOCAL COHOMOLOGY OF MODULES

Let R be a Noetherian commutative ring and \mathfrak{a} be an ideal in R. For each R-module M, define $\Gamma_{\mathfrak{a}}(M) = \{m \in M | \mathfrak{a}^t m = 0 \text{ for some } t \in \mathbb{N}\}$. For a homomorphism $f: M \to N$ of R-modules, $f(\Gamma_{\mathfrak{a}}(M)) \subseteq \Gamma_{\mathfrak{a}}(N)$.

- (1) $\Gamma_{\mathfrak{a}}(-)$ is a functor on the category of *R*-modules and it extends to a functor on the the category of complexes of *R*-modules.
- (2) $\Gamma_{\mathfrak{a}}(-)$ is a left exact functor.

Consider an injective resolution of

$$I^{\bullet}: 0 \longrightarrow I^{0} \longrightarrow I^{1} \longrightarrow \cdots \longrightarrow I^{i} \longrightarrow I^{i+1} \longrightarrow \cdots$$

of M. Apply the functor $\Gamma_{\mathfrak{a}}(-)$ to the complex I^{\bullet} to obtain

$$0 \longrightarrow \Gamma_{\mathfrak{a}}(I^{0}) \longrightarrow \cdots \longrightarrow \Gamma_{\mathfrak{a}}(I^{i}) \longrightarrow \Gamma_{\mathfrak{a}}(I^{i+1}) \longrightarrow \cdots$$

and take the *j*th cohomology module of this complex. This cohomology module is called the *j*-th local cohomology of M with support in \mathfrak{a} and denoted by $H^j_{\mathfrak{a}}(M)$.

Example 4.1. Let *R* be a ring and \mathfrak{a} is an ideal in *R* such that $\mathfrak{a}^n = 0$ for some $n \ge 0$. Then $\Gamma_{\mathfrak{a}}(-)$ is the identity functor and hence

$$H^{j}_{\mathfrak{a}}(M) = \begin{cases} M & \text{if } j = 0\\ 0 & \text{if } j \ge 0 \end{cases}$$

Proposition 4.2. (1) $H^{\mathcal{I}}_{\mathfrak{a}}(M) = 0$ for all $i > \dim M$.

- (2) Define $ara(\mathfrak{a}) = \min\{k : \exists a_1, \ldots, a_k \in R \text{ such that } rad(a_1, \ldots, a_k) = rad\mathfrak{a}\}$. The number $ara(\mathfrak{a})$ is called the **arithmetic rank** of *I*. Then $H^{\mathfrak{a}}_{\mathfrak{a}}(M) = 0$ for all $i > ara(\mathfrak{a})$.
- (3) If rad $\mathfrak{a} = rad \mathfrak{b}$, then, for each $j, H^j_{\mathfrak{a}}(M) \cong H^j_{\mathfrak{b}}(M)$.
- (4) If S is a multiplicative closed subset of R, then $S^{-1}H^j_{\mathfrak{a}}(M) \cong H^j_{\mathfrak{a}}(S^{-1}M)$.
- (5) If $R \to S$ is a ring homomorphism and N is an S-module, then

$$H^{j}_{\mathfrak{a}}(N) \cong H^{j}_{\mathfrak{a}S}(N).$$

(6) If $R \to S$ is flat, then there is a natural isomorphism of S-modules

$$S \otimes H^j_{\mathfrak{a}}(M) \cong H^j_{\mathfrak{a}S}(S \otimes_R M)$$

Theorem 4.3. For each R module M and $j \ge 0$, $\lim_{t \to t} Ext_R^j(R/\mathfrak{a}^t, M) \cong H^j_\mathfrak{a}(M)$.

Let $\mathbf{x} = x_1, \ldots, x_k$ be elements in R, $\mathfrak{a} = (x_1, \ldots, x_k)$ and $\mathbf{x}^t = x_1^t, \ldots, x_k^t$. For each t, let $K(\mathbf{x}^t, M)_{\bullet}$ denote $M \otimes K(\mathbf{x}^t)_{\bullet}$, the Koszul complex of M with respect to \mathbf{x}^t .

Theorem 4.4. For each R module M and each integer j,

$$H^j_{\mathfrak{a}}(M) \cong \lim_{\stackrel{\longrightarrow}{t}} H^j(K(\mathbf{x}^{\mathbf{t}}, M)_{\bullet}).$$

Let $R = \bigoplus_{\underline{n} \in \mathbb{N}^s} R_{\underline{n}}$ be a graded Noetherian ring and $M = \bigoplus_{\underline{n} \in \mathbb{Z}^s} M_{\underline{n}}$ be a graded module in the category of graded modules of R, denoted by ${}^*\mathcal{C}(R)$. Let I be a homogeneous ideal of R. Then:

- (1) ${}^{*}\mathcal{C}(R)$ has enough injectives and ${}^{*}H_{I}^{j}(M)$ is called the *j*-th graded local cohomology module of M with support in I.
- (2) If we forget the grading on ${}^*H^j_I(M)$, then the resulting *R*-module is isomorphic to $H^j_I(M)$.

Theorem 4.5. For any joint reduction (a, b) of \mathcal{F} ,

$$[H^2_{(at_1,bt_2)}(\mathcal{R}'(\mathcal{F}))]_{(0,0)} \cong \lim_{\substack{\longrightarrow\\k}} \frac{\mathcal{F}(k,k)}{a^k \mathcal{F}(0,k) + b^k \mathcal{F}(k,0)}$$

Proof. For any joint reduction (a, b) of \mathcal{F} , consider the Koszul complex

$$F^{k^{\cdot}}: 0 \longrightarrow \mathcal{R}'(\mathcal{F}) \xrightarrow{\alpha_k} \mathcal{R}'(\mathcal{F})(ke_1) \oplus \mathcal{R}'(\mathcal{F})(ke_2) \xrightarrow{\beta_k} \mathcal{R}'(\mathcal{F})(ke) \longrightarrow 0,$$

where the maps are defined as,

$$\alpha_k(1) = ((at_1)^k, (bt_2)^k)$$
 and $\beta_k(u, v) = -(bt_2)^k u + (at_1)^k v.$

Therefore

$$[H^2_{(at_1,bt_2)}(\mathcal{R}'(\mathcal{F}))]_{(0,0)} \cong \lim_{\substack{\longrightarrow\\k}} \frac{\mathcal{F}(k,k)}{(\operatorname{im}\beta_k)_{(0,0)}}$$

Since $(\operatorname{im} \beta_k)_{(0,0)} = a^k \mathcal{F}(0,k) + b^k \mathcal{F}(k,0)$, we get the required result.

5. A few definitions

- (1) A sequence a_1, a_2, \ldots, a_n of elements in a proper ideal I of R is called a **regular sequence** if a_i is a nonzerodivisor on $R/(a_1, a_2, \ldots, a_{i-1})$ for $i = 1, 2, \ldots, n$.
- (2) All maximal regular sequences in I have equal length called the grade of I and it is denoted by grade(I).
- (3) The grade of \mathfrak{m} is called the **depth of** R.
- (4) For any local ring R, depth $R \leq \dim R$. We say that R is **Cohen-Macaulay** if depth $R = \dim R$.
- (5) A Noetherian local ring (R, \mathfrak{m}) is called **regular** if dim R is same as number of minimal generators of \mathfrak{m} .
- (6) A Noetherian local ring is called analytically unramified if its completion has no nonzero nilpotent element.

6. Rees' Theorem and its consequences

Theorem 6.1 ([?]). Let (R, \mathfrak{m}) be an analytically unramified Cohen-Macaulay local ring of dimension 2. Let I, J be \mathfrak{m} -primary ideals and let (a, b) be a good joint reduction of the filtration $\{\overline{I^r J^s}\}_{r,s\in\mathbb{Z}}$. Then following are equivalent.

- (1) $\overline{e}_2(IJ) = \overline{e}_2(I) + \overline{e}_2(J).$
- (2) for all r, s > 0, $\overline{I^r J^s} = a\overline{I^{r-1}J^s} + b\overline{I^r J^{s-1}}$.

Theorem 6.2. Under the assumptions above, $\overline{IJ} = \overline{I} \ \overline{J} \ if \ \overline{IJ} = a\overline{J} + b\overline{I}$.

Proof. $\overline{IJ} = a\overline{J} + b\overline{I}$ implies that $\overline{IJ} \subseteq \overline{I} \ \overline{J}$. Since $\overline{I} \ \overline{J} \subseteq \overline{IJ}$ in a Noetherian ring, $\overline{IJ} = \overline{I} \ \overline{J}$.

Theorem 6.3 ([?]). Let (R, \mathfrak{m}) be a two-dimensional Cohen-Macaulay analytically unramified local ring with infinite residue field and let I be an \mathfrak{m} -primary ideal. Then the following are equivalent.

(1) $\bar{e}_2(I) = 0.$

(2) $\overline{I^n} = (x, y)\overline{I^{n-1}}$ for $n \ge 2$ and for any minimal reduction (x, y) of I.

Theorem 6.4 (Zariski). Let (R, \mathfrak{m}) be a two-dimensional regular local ring and let I, J be integrally closed ideals in R. Then IJ is integrally closed.

References

- P. B. Bhattacharya, *The Hilbert function of two ideals*, Math. Proc. Cambridge Philos. Soc. 53 (1957), 568-575.
- [2] C. Huneke, Hilbert functions and symbolic powers, Michigan Math. J. 34 (1987), 293-318.
- [3] D. Rees, Hilbert functions and pseudo-rational local rings of dimension two, J. London Math. Soc. (2) 24 (1981), 467-479.
- [4] D. Rees, Generalizations of reductions and mixed multiplicities, J. London Math. Soc. (2) 29 (1984), 397-414.
- [5] D. Rees, Generalizations of reductions and mixed multiplicities, J. London Math. Soc. (2) 29 (1984), 397-414.
- [6] P. Samuel, La notion de multiplicité en algébre et en géométrie algébrique, J. Math. Pures Appl. 30 (1951), 159-274.
- [7] I. Swanson, Mixed multiplicities, joint reductions, and a theorem of Rees, J. London Math. Soc. 48 (1993), 1-14

 [8] B. Teissier, Cycles évanscents, sections planes et conditions de Whitney, Astèrisque, 7-8, Soc. Math. France, Paris, (1973), 285-362.