BOREL-FIXED IDEALS AND THEIR FREE RESOLUTIONS

MANOJ KUMMINI

ABSTRACT. This is an extended abstract of the talk at the First International Workshop and Conference in Commutative Algebra, held at Tribhuvan University, Kathmandu, Nepal during April 20 - 26, 2015. It is written in an expository style. We first look at Borel-fixed ideals and a minimal free resolution in characteristic zero, due to Eliahou and Kervaire. We will then consider a related conjecture of Pardue in characteristic p, and discuss a counter-example to this conjecture, obtained in joint work with G. Caviglia.

3

1

2

1. INTRODUCTION

Let k be a field and $R := k[x_1, ..., x_n]$ a polynomial ring where $x_1, ..., x_n$ are indeterminates over k. The *general linear group* $GL_n(k)$ (which we think of as invertible $n \times n$ matrices over k) acts on R as follows: First, if

$$g = [a_{i,j}]_{\substack{1 \le i \le n \\ 1 \le j \le n}} \in \mathrm{GL}_n(\Bbbk)$$

7 then let

$$gx_i := \sum_{j=1}^n a_{i,j} x_j.$$

8 For a monomial $m := x_1^{e_1} \cdots x_n^{e_n}$ of *R*, we let

$$gm := (gx_1)^{e_1} \cdots (gx_n)^{e_n}$$

⁹ and for a polynomial $f = \alpha_1 m_1 + \cdots + \alpha_r m_r$ (where the α_i are from \Bbbk and the m_i are monomi-¹⁰ als), we set

$$gf := \sum_{i=1}^r \alpha_i(gm_i).$$

11 This defines a k-algebra automorphism of R.

Let *B* be the subgroup of $GL_n(\mathbb{k})$ consisting of all the lower-triangular (invertible) matrices.

13 This is a Borel-subgroup of $GL_n(\mathbb{k})$. Note that for every $g = [a_{i,j}]_{1 \le j \le i \le n} \in B$, $gx_i = \sum_{j=1}^i a_{i,j}x_j$

is a homogeneous linear polynomial involving x_1, \ldots, x_i . Since *g* is invertible and lowertriangular, the diagonal entries must be non-zero.

Definition 1.1. An *R*-ideal *I* is said to be *Borel-fixed* if $gf \in I$ for every $g \in B$ and $f \in I$.

It is easy to observe that a Borel-fixed ideal must be a monomial ideal. More precisely, an *R*ideal *I* is monomial if and only if $gf \in I$ for every diagonal matrix *g* and every $f \in I$. Therefore being Borel-fixed imposes certain conditions on *I*.

Theorem 1.2 (See [?, Theorem 15.23]). Let *p* be the characteristic of k. An *R*-ideal *I* is Borel-fixed if and only if *J* is a monomial ideal and the following holds for every monomial minimal generator of *I*: If x_i^t divides *m* and x_i^{t+1} does not, then for every i < j and $s \prec_p t$, $(x_i/x_j)^s m \in I$.

Here the partial order \prec_p on positive integers is defined as follows: If p = 0, then $s \prec_p t$ if $s \leq t$. If p > 0 is a prime number, then for a positive integer s, write $s = \sum_{i=0}^{\infty} s_i p^i$ with the $s_i \geq 0$ (uniquely determined). Then $s \prec_p t$ if $s_i \leq t_i$ for all $i \geq 0$.

MANOJ KUMMINI

We now discuss free resolutions of graded *R*-modules. Note that *R* is a graded ring with deg $x_i = 1$ for all *i*. Write $\mathfrak{m} = (x_1, \dots, x_n)$. Let *M* be a finitely generated graded *R*-module. Then by the Hilbert Syzygy Theorem, there exists a complex

$$0 \longrightarrow F_n \xrightarrow{\partial_n} \cdots \xrightarrow{\partial_2} F_1 \xrightarrow{\partial_1} F_0 \longrightarrow 0$$

of finitely generated graded free *R*-modules whose homology is concentrated at position 0 and is isomorphic to *M* (i.e. coker $\partial_1 \simeq M$). Such a complex is called a *graded free resolution* of *M*. If Im $\partial_i \subseteq \mathfrak{m}F_{i-1}$ for all *i*, then we say that the resolution is *minimal*. Hereafter, by ideal, module etc, we mean graded ideal, graded module etc.

The (\mathbb{N} -graded) Betti numbers of M are the integers $\beta_{i,j}(M) := \dim_{\mathbb{K}} \operatorname{Tor}_{i}^{R}(M, \mathbb{k})_{j}$. Since one can compute these Tor modules using any free resolution of M, one sees immediately that $\beta_{i,j}(M)$ is the number of elements of degree j in any R-basis of F_{i} consisting of homogeneous elements, for any minimal resolution F_{\bullet} . The Betti table $\beta(M)$ of M is the collection $(\beta_{i,j}(M))_{i,j}$. There is a natural construction called the *mapping cone* that inductively constructs a free

resolution of an ideal (more precisely of the corresponding quotient ring). Let *J* be an *R*-ideal and $f \in R$ a homogeneous element of degree *d*, suppose that we can construct resolutions *F*_• of *R*/*J* and *G*_• of *R*/(*J* : *f*). Then the injective map (of degree zero)

$$\frac{R}{(J:f)}(-d) \longrightarrow \frac{R}{J}$$

41 gives rise to an map of complexes

$$\phi: G_{\bullet} \otimes_{R} R(-d) \longrightarrow F_{\bullet}.$$

⁴² The *mapping cone* of ϕ is a complex $M(\phi)_{\bullet}$ with

$$M(\phi)_i = F_i \oplus G_{i-1}$$

and with differentials suitably defined. It is a graded free resolution of R/(J + (f)). It is not a minimal free resolution, in general. See [?, Appendix A3] for details.

Now suppose that k is an infinite field and that its characteristic is zero. If *I* is a Borelfixed ideal in *R*, then there is a minimal free resolution of *I* due to Eliahou and Kervaire. It is inductively constructed using mapping cones, but the key observation is that the minimal monomial generating set of *I* has an ordering m_1, \ldots, m_r such that each ideal $J_i := (m_1, \ldots, m_i)$ is Borel-fixed, $(J_i : m_{i+1})$ is of the form (x_1, \ldots, x_{t_i}) for some t_i and that the mapping cone is minimal. Thus we get a minimal graded free resolution of *I*.

51

2. PARDUE'S CONJECTURE

Definition 2.1. Let *p* be zero or a prime number. A monomial ideal *J* of $S := \mathbb{Z}[x_1, ..., x_n]$ is said to be *p*-*Borel-fixed* if $J(S \otimes_{\mathbb{Z}} \Bbbk)$ is a Borel-fixed ideal of $(S \otimes_{\mathbb{Z}} \Bbbk)$ for every infinite field \Bbbk of characteristic *p*.

If *J* is 0-Borel-fixed, then its Eliahou-Kervaire resolution, constructed using mapping cones, is a minimal resolution of $(S/J) \otimes_{\mathbb{Z}} \ell$ for every field ℓ , and hence $\beta((S/J) \otimes_{\mathbb{Z}} \ell)$ does not depend on ℓ . K. Pardue [?, p.43] conjectured that this holds also for *p*-Borel-fixed ideals for prime numbers *p*.

Theorem 2.2 ([?, Theorem 3.2]). Let *p* be any prime. Then there exists a *p*-Borel-fixed S-ideal I such that for any field ℓ , there is a region (independent of ℓ) of $\beta((S/I) \otimes_{\mathbb{Z}} \ell)$ that is determined by $\beta((S/J) \otimes_{\mathbb{Z}} \ell)$.

See [?, Theorem 3.2] for the precise statement. This shows that, homologically, the class of Borel-fixed ideals in positive characteristic is as bad as the class of all monomial ideals. In particular, beginning with an *S*-ideal *J* such that $\beta((S/J) \otimes_{\mathbb{Z}} \ell)$ depends on ℓ (equivalently, the characteristic of ℓ), we conclude that there exists a *p*-Borel-fixed ideal *I* such that $\beta((S/J) \otimes_{\mathbb{Z}} \ell)$

2

depends on ℓ , settling Pardue's conjecture in the negative. See [?, Example 3.5] for an example 66 using the real projective plane.

67

68

References

- [CK14] G. Caviglia and M. Kummini. Betti tables of p-Borel-fixed ideals. J. Algebraic Combin., 39(3):711–718, 2014. 69 70
 - arXiv:1212.2201 [math.AC].
- [Eis95] D. Eisenbud. Commutative algebra, with a View Toward Algebraic Geometry, volume 150 of Graduate Texts in 71 Mathematics. Springer-Verlag, New York, 1995. 72
- [Par94] K. Pardue. Nonstandard borel-fixed ideals. 1994. Thesis (Ph.D.)-Brandeis University. 73
- CHENNAI MATHEMATICAL INSTITUTE, SIRUSERI, TAMILNADU 603103. INDIA 74
- *E-mail address*: mkummini@cmi.ac.in 75