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1. Cotilting modules and classes

Cotilting modules were first studied in the representation theory of algebras.
They can be viewed as generalizations of injective cogenerators:

Definition 1.1. Let R be a ring and n < ω. A module C is n-cotilting provided
that

(C1) C has injective dimension at most n.
(C2) ExtiR(CX , C) = 0 for each set X and each 1 ≤ i ≤ n.
(C3) There are an injective cogenerator W and a long exact sequence 0→ Cn →

Cn−1 → · · · → C0 → W → 0, with Ci ∈ Prod(C), where Prod(C) denotes
the class of all direct summands of (possibly infinite) direct products of
copies of C.

The class CC = ⊥{C} = {M ∈ Mod–R | ExtiR(M,C) = 0 for all i ≥ 1} is the
n-cotilting class induced by C.

Two cotilting modules C and C ′ are said to be equivalent, if ⊥{C} = ⊥{C ′}.
C is a minimal n-cotilting module in case C is a direct summand of each cotilting

module equivalent to C.

It is easy to see that the 0-cotilting modules are exactly the injective cogener-
ators, so there is only one 0-cotilting class of R-modules, namely the class of all
R-modules. Also, if R is commutative and noetherian, then the minimal injective
cogenerator Wmin =

⊕
m∈mSpec(R)E(R/m) is a minimal 0-cotilting module in the

sense of Definition 1.1.
We start with a key property of general cotilting modules:

Theorem 1.2 (Šťov́ıček). Every cotilting module C is pure-injective, i.e., the func-
tor HomR(−, C) is exact on all pure-exact sequences in Mod–R.

In particular, if a minimal n-cotilting module inducing an n-cotilting class C
exists, then, being pure-injective, it is unique up to isomorphism (by a classic
result of Bumby).

Since pure-injective modules over several important classses of rings are known,
Theorem 1.2 makes it possible to classify all cotilting modules over those rings. We
demostrate this on the example of Dedekind (= hereditary) domains:

Example 1.3. Indecomposable pure-injective modules over a Dedekind domain
R with quotient field Q are well known. These are, for each p ∈ mSpec(R), the
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modules Rpn (= the factors of R modulo pn for 0 < n < ω), the Prüfer modules
Rp∞ (= the directed unions of Rpn for n < ω), the p-adic modules Jp (= the
modules isomorphic to End(Rp∞)), and also Q viewed as an R-module.

Using this classification, one can show that cotilting (= 1-cotilting) modules are
parametrized up to equivalence by subsets of mSpec(R). Given such a subset S, a
cotilting module CS can be defined by the formula

CS = Q⊕
⊕
p∈S

Jp ⊕
∏

q∈mSpec(R)\S

Rq∞ .

The class CS induced by CS is the class of all S-torsion-free modules, i.e.,

CS = {M ∈ Mod–R | m.p = 0 implies m = 0 for all m ∈M and p ∈ S}.

2. Approximations of modules

Next we present the relation between cotilting and approximations of modules.
The following basic notions are due to Enochs and Auslander [2]:

Definition 2.1. (1) A class of modules A is covering in case A is precovering,
that is, for each module M there exists f ∈ HomR(A,M) with A ∈ A such
that each f ′ ∈ HomR(A′,M) with A′ ∈ A has a factorization through f ,

A
f // M

A′

g

OO

f ′

>>

and moreover, f is a A-cover of M , that is, for f = f ′, each such factor-
ization g is an automorphism.

(2) Dually, we define envelopes and enveloping classses of modules.
Note: Covers and envelopes are unique up to isomorphism.

Example 2.2. The class I0 of all injective modules is enveloping, since the inclusion
M ↪→ E(M) is an I0-envelope for each module M .

(Pre-)covering and (pre-)enveloping classes make it possible to develop relative
homological algebra in the spirit of [2], by using these classes in place of the classes
of projective and injective modules, respectively. The following result is relevant to
this context:

Proposition 2.3. Let C be a class of modules. Then C is 1-cotilting if and only if
C is a torsion-free class which is covering.

In general, n-cotilting classes are characterized as follows:

Theorem 2.4. Let C be a class of modules and n < ω. Then C is n-cotilting if and
only if

(1) C = ⊥E for a class of (pure-injective) modules E,
(2) C is closed under direct products (and it is covering), and
(3) the class C⊥ = {M ∈ Mod–R | ExtiR(C,M) = 0 for all i ≥ 1 and all C ∈
C} consists of modules of injective dimension ≤ n.
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3. Structure of cotilting classes and modules

From now on, we will assume that R is a commutative noetherian ring.
We start with a classification of 1-cotilting classes in this setting:

Theorem 3.1. (1) Let P be a lower subset of Spec(R) containing Ass(R), and
CP = {M ∈ Mod–R | Ass(M) ⊆ P}. Then CP is a 1-cotilting class.

(2) Each 1-cotilting class arises as in (1). That is, 1-cotilting classes are
parametrized by the lower subsets of Spec(R) containing Ass(R).

Proof. We sketch only the proof of part (1). Let Q = Spec(R)\P . By the results on
morphisms between indecomposable injective modules presented in the Preparatory
Talk, CP = {M ∈ Mod–R | HomR(M,E(R/q)) = 0 for each q ∈ Q}. In particular,
CP is a torsion-free class in Mod–R.

Moreover CP = {M ∈ Mod–R | Tor1R(M,Tr(R/q)) for all q ∈ Q} where Tr(R/q)
denotes the Auslander-Bridger transpose of R/q, i.e., the cokernel of the map f∗ =

HomR(R, f), where Rm f→ R → R/q → 0 is a presentation of R/q. Note that
Tr(R/q) has projective dimension ≤ 1 for each q ∈ Q, because Q ∩Ass(R) = ∅.

Let E = {HomR(Tr(R/q),Wmin) | q ∈ Q}. Then E consists of modules of
injective dimension ≤ 1, and CP = ⊥E , whence C⊥P consists of modules of injective
dimension ≤ 1, too. By Theorem 2.4, CP is a 1-cotilting class. �

We will now describe the structure of all cotilting classes over commutative
noetherian rings. They are parametrized by the characteristic sequences defined
in 3.2 below. Here, for a module M and i < ω, we consider the minimal injective
coresolution of M

I : 0→M → E(M) = I0
f0→ I1

f1→ . . .

and denote by Ω−i(M) = Ker(fi) the ith cosyzygy of M in I.

Definition 3.2. A sequence P = (P0, . . . , Pn−1) of subsets of Spec(R) of length n
is called characteristic provided that

(i) Pi is a lower subset of Spec(R) for each i < n,
(ii) P0 ⊆ P1 ⊆ · · · ⊆ Pn−1, and
(iii) Ass(Ω−i(R)) ⊆ Pi for all i < n.

For each characteristic sequence P, we define a class of modules

CP = {M ∈ Mod–R | Ass(Ω−i(M)) ⊆ Pi for all i < n} .
Note that a characteristic sequence of length 1 is just (P0) where P0 is a lower

subset of Spec(R) containing Ass(R) (cf. Theorem 3.1 and Example 1.3). The
general parametrization goes as follows:

Theorem 3.3 ([1]). Let P = (P0, . . . , Pn−1) be a characteristic sequence. Then CP
is an n-cotilting class, and the assignments

P = (P0, . . . , Pn−1) 7→ CP
and

C 7→ (Ass(C0), . . . ,Ass(Cn−1))

where Ci = ⊥{Ω−i(C)}, are mutually inverse bijections between characteristic se-
quences of length n and n-cotilting classes.

Remark: In the setting of Theorem 3.3, the class Ci is actually an (n−i)-cotilting
class.
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4. Minimal cotilting modules

Finally, we turn to the question of existence (and structure) of minimal cotilting
modules.

Definition 4.1. Let P = (P0, . . . , Pn−1) be a characteristic sequence. Define
P−1 = ∅ and Pn = Spec(R).

For each 0 ≤ i ≤ n, let I(Pi) be the class of all injective modules I with
Ass(I) ⊆ Pi. Note that I(Pi) is a covering class because it is precovering and
closed under direct limits - cf. [3].

Let 0 ≤ i ≤ n. For a non-empty subset S of Pi\Pi−1, we let ES =
⊕

p∈S E(R/p)
and consider the long exact sequence

0→ CS → E0
ϕ0→ E1

ϕ1→ . . .
ϕi−2→ Ei−1

ϕi−1→ ES → 0

where ϕi−1 is a I(Pi−1)-cover of ES , and for each 0 ≤ j < i− 1, µj is the inclusion
of Kj = Ker(ϕj+1) into Ej+1, ψj : Ej → Kj is a I(Pj)-cover, and ϕj = µj ◦ ψj .

For S = ∅, we let CS = 0.

Theorem 4.2 ([4]). Let P = (P0, . . . , Pn−1) be a characteristic sequence and C be
the corresponding n-cotilting class.

Then there exists a unique minimal n-cotilting module Cmin inducing C. In fact,

Cmin
∼= CS0

⊕ · · · ⊕ CSn

where Si is the set of all maximal elements in Pi \ Pi−1, for each i ≤ n.

Final remark: The notions of an n-cotilting class and module are formally dual
to the notions of an n-tilting class and module, respectively. Using the Auslander-
Bridger transpose one can show that, in the case when R is commutative and
noetherian, there is also an explicit duality available, and characteristic sequences
parametrize also all n-tilting classes. However, the structure of the n-tilting modules
remains open in general. For more details, we refer to [1] and [3].
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