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1. Associated primes

Prime ideals are basic objects in classic commutative algebra and algebraic ge-
ometry. For example, the irreducibility of an algebraic set A in affine n-space is
equivalent to its ideal I(A) in the polynomial ring k[x1, . . . , xn] being prime. By
Krull’s Principal Ideal Theorem, all prime ideals in a commutative noetherian ring
R have finite height; the supremum of these heights is the Krull dimension of R,
[?].

Throughout this article, we will assume that R is a commutative noetherian ring.
We will denote by Spec(R) the prime spectrum of R, that is, the set of all

prime ideals of R partially ordered by inclusion, and by mSpec(R) the maximal
spectrum of R, that is, the subset of Spec(R) consisting of maximal ideals of R.
The notation Mod–R and mod–R will stand for the class of all (R-) modules, and
all finitely generated (R-) modules, respectively.

We will be interested in the role of prime ideals in the structure of modules.
The simple notion of an associated prime is of key importance here:

Definition 1.1. For a moduleM , let Ass(M) = {p ∈ Spec(R) | R/p embeds into M}.
Equivalently, Ass(M) is the set of all prime ideals that occur as annihilators of el-
ements of M .

The elements of Ass(M) are called the associated primes of M .

Example 1.2. For each p ∈ Spec(R), we have Ass(R/p) = {p}.
Indeed, if q ∈ Spec(R) annihilates a non-zero element r + p ∈ R/p, then q ⊆ p

because p is prime, and clearly p annihilates every element of R/p.

Lemma 1.3. Ass(M) 6= ∅ for each non-zero module M .

Proof. Since R is noetherian, the set of annihilators {ann(x) | 0 6= x ∈ M} has a
maximal element, say ann(y). If u.v ∈ ann(y) and v /∈ ann(y), then ann(v.y) =
ann(y) by the maximality, so u ∈ ann(y). This proves that ann(y) ∈ Spec(R). �

Note that Lemma ?? fails for non-noetherian commutative rings in general. (For
example, if R =

∏
i∈I Fi/(

⊕
i∈I Fi), an infinite product of fields Fi modulo their

direct sum, then the regular module R has no associated primes.)
The cyclic modules R/p where p ∈ Spec(R) can be used to build arbitrary

modules by (transfinite) extensions:
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Definition 1.4. Let C be a class of modules. A module M is said to be C-filtered
(or a transfinite extension of the modules in C) provided there is a chain of modules
M = (Mα | α ≤ σ) such that M0 = 0, Mα is a submodule of Mα+1 with Mα+1/Mα

isomorphic to an element of C for each α < σ, Mα =
⋃
β<αMβ for each limit ordinal

α ≤ σ, and Mσ = M . The chain M is called a C-filtration of M of length σ.
For example, if C is the class of all simple modules, then the C-filtered modules

are called semiartinian, and the finitely C-filtered modules are exactly the modules
of finite length.

Lemma 1.5. Each module is P-filtered where P = {R/p | p ∈ Spec(R)}.
Proof. If M 6= 0, then by Lemma ??, there exists p ∈ Spec(R) and a short exact

sequence 0 = M0 → R/p
µ→ M → M ′ → 0. If M ′ 6= 0, we let M1 = µ(R/p) and

apply Lemma ?? to M/M1 in order to obtain a p′ ∈ Spec(R) and a short exact
sequence 0 → R/p′ → M/M1 → M ′′ → 0, etc. Proceeding similarly in non-limit
steps (and taking unions in the limit ones), we eventually arrive at an ordinal σ
such that Mσ = M . Then M = (Mα | α ≤ σ) is the desired P-filtration of M . �

Note that P-filtrations are not unique in general: for example, if R is a domain,
then (0, R) is a P-filtration of the regular module R, but for each m ∈ mSpec(R),
any P-filtration of m can be prolonged, by adding R as the last term, to a P-
filtration of R.

We also mention an easy observation concerning associated primes:

Lemma 1.6. For each short exact sequence of modules, 0 → M → N → P → 0,
we have Ass(M) ⊆ Ass(N) ⊆ Ass(M) ∪Ass(P ).

Since finitely generated modules have finite P-filtrations, we immediately obtain

Corollary 1.7. Ass(M) is finite for each finitely generated module M .

Another immediate corollary will be useful later on for understanding torsion-free
classes of modules:

Corollary 1.8. Let P ⊆ Spec(R) and let Q = {R/p | p ∈ P} be the corresponding
subset of P.

Then the class CP = {M ∈ Mod–R | Ass(M) ⊆ P} is closed under submodules
and extensions. Moreover, CP contains all Q-filtered modules.

We finish our exposition on associated primes by a less well-known variant of
Lemma ?? due to Hochster:

Lemma 1.9. Let M be a finitely generated module. Let C = {N ∈ mod–R | ∃p ∈
Ass(M) : N embeds into R/p }. Then M is C-filtered.

2. Matlis theory of indecomposable injective modules

Now we briefly review the structure and basic properties of injective modules
over commutative noetherian rings. For details, see [?]. The basic theorem on their
(unique) decomposition into indecomposable summands holds even in the one-sided
noetherian setting, but the structure of indecomposable injectives is particular to
the commutative case:

Theorem 2.1. Each injective module is (uniquely) a direct sum of copies of the in-
decomposable injective modules E(R/p) (= injective envelopes of the modules R/p)
for some p ∈ Spec(R).
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Indecomposable injectives can easily be recognized by their associated primes:

Example 2.2. Ass(E(R/p)) = {p} for each p ∈ Spec(R).
Indeed, if q ∈ Spec(R) and R/q embeds into E(R/p), then its intersection with

R/p is non-zero, in contradiction with Example ??.

The following important facts concerning the structure of E(R/p) for p ∈ Spec(R)
are due to Matlis:

Lemma 2.3. (1) Each x ∈ E(R/p) is annihilated by pn for some finite n.
However, if r ∈ R \ p, then the multiplication by r is an automorphism of
E(R/p).

(2) Denote by Rp the localization of R at p, and let k(p) = Rp/pp. Then
E(R/p) is also an indecomposable injective Rp-module, namely the injective
envelope of the simple Rp-module k(p). There are R-module inclusions
R/p ⊆ k(p) ⊆ E(R/p), and the Rp-module E(R/p) is {k(p)}-filtered and
artinian.

Consequently, homomorphisms between indecomposable injective modules re-
spect the partial order on Spec(R):

Lemma 2.4. Let p, q ∈ Spec(R). Then HomR(E(R/p), E(R/q)) 6= 0, if and only
if p ⊆ q.

Proof. If p ⊆ q, then the epimorphism R/p → R/q extends to a non-zero homo-
morphism of the respective injective envelopes.

Conversely, if r ∈ p \ q and f ∈ HomR(E(R/p), E(R/q)) is such that f(x) 6= 0
for some x ∈ E(R/p), then rnx = 0 for some finite n > 0 by Lemma ??(1), so
rnf(x) = f(rnx) = 0. However, the multiplication by r is an automorphism of
E(R/q), again by Lemma ??(1), so rnf(x) 6= 0, a contradiction. �

Injectivity is closely related to the property of being a cogenerator in the sense
of the following definition:

Definition 2.5. An module I is a cogenerator in case each module embeds in a
(possibly infinite) direct product of copies of I.

The module Cmin =
⊕

m∈mSpecRE(R/m) is injective and a cogenerator. More-
over, it is isomorphic to a direct summand in any injective cogenerator, whence
Cmin is called the minimal injective cogenerator.

3. Applications to torsion pairs of modules

In order to present a classification of cotilting classes over commutative noether-
ian rings later on, we will recall some classic facts on the structure of torsion pairs
and classes of modules in that setting.

Definition 3.1. (1) A pair of classes of modules T = (T ,F) is a torsion pair, if
T = {T | HomR(T, F ) = 0 for each F ∈ F} and F = {F | HomR(T, F ) =
0 for each T ∈ T }. T is then called the torsion class, and F the torsion-free
class of T.

Note: These definitions make sense both in mod–R, and in Mod–R.
(2) A torsion pair T in Mod–R is hereditary, if T is closed under submodules,

or equivalently, F is closed under injective envelopes.
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We finish by recalling how the associated primes mediate a correspondence be-
tween torsion-free classes and lower subsets of Spec(R) (i.e., the subsets P such
that if p ∈ P and q ⊆ p, then q ∈ Spec(R)):

Theorem 3.2 (Gabriel). (1) Torsion-free classes C in mod–R correspond 1-1
to lower subsets P of Spec(R), via the inverse assignments
P 7→ {M ∈ mod–R | Ass(M) ⊆ P} and
C 7→ {p ∈ Spec(R) | p ∈ Ass(M) for some M ∈ C}.

(2) Hereditary torsion pairs T in Mod–R correspond 1-1 to lower subsets P of
Spec(R), via the inverse assignments
P 7→ TP = (TP , CP ) where CP = {M ∈ Mod–R | Ass(M) ⊆ P}, and
T = (T , C) 7→ P = {p ∈ Spec(R) | p ∈ Ass(M) for some M ∈ C}.

Remark: While hereditary torsion pairs are easily classified by Theorem ??(2),
the classification of all torsion pairs is hopeless in general - e.g., there is a proper
class of torsion pairs of abelian groups.
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