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Let R be a commutative ring with 1 6= 0, and let Z(R) be its set of zero-
divisors. Over the past several years, there has been considerable attention in
the literature to associating graphs with commutative rings (and other alge-
braic structures) and studying the interplay between ring-theoretic and graph-
theoretic properties. In this general talk, we will explore (by examples) some
basic properties of of the classical zero-divisor graph in the sense of Anderson-
Livingston-Beck. Recall that the zero-divisor graph of R is the (undirected)
graph with vertices Z(R)∗ = Z(R) \ {0}, and two distinct vertices x and y are
adjacent if and only if xy = 0. If time allows, we will touch briefly on the two
graphs: (1) The annihilator graph of R. The annihilator graph of R is the
(undirected) graph AG(R) with vertices Z(R)∗ = Z(R) \ {0}, and two distinct
vertices x and y are adjacent if and only if annR(xy) 6= annR(x) ∪ annR(y),
where if a ∈ Z(R), then annR(a) = {d ∈ R | da = 0}. (2) The total graph
of R. The total graph of R is the (undirected) graph TG(R) with all elements
of R as vertices, and for distinct x, y ∈ R, the vertices x and y are adjacent if
and only if x + y ∈ Z(R).
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