SOME CONSTRUCTIONS OF GORENSTEIN ARTIN RINGS

H. ANANTHNARAYAN RESEARCH TALK AT TRIBHUVAN UNIVERSITY 22ND APRIL, 2015

ABSTRACT. Using inverse systems, one can construct Gorenstein Artin rings, including the idealisation of a canonical module of an Artinian local ring, as seen in the preparatory talk. Given two Gorenstein Artin rings, we use inverse systems to construct a new Gorenstein Artin ring called their connected sum. Finally, we see a condition under which the idealisation is a connected sum.

1. INTRODUCTION

Consider the polynomial rings $T_1 = \mathbb{C}[y_1, \ldots, y_m], T_2 = \mathbb{C}[z_1, \ldots, z_n]$, and let $E_1 = \mathbb{C}[Y_1, \ldots, Y_m], E_2 = \mathbb{C}[Z_1, \ldots, Z_n]$. Then T_i acts on E_i by partial differentiation.

Let $F_1 \in E_1$, $F_2 \in E_2$. Recall that $R_i = T_i / \operatorname{ann}_{T_i}(F_i)$ are Gorenstein Artin, for i = 1, 2. Define $F = F_1 + F_2 \in E = \mathbb{C}[Y_1, \ldots, Y_m, Z_1, \ldots, Z_n]$. Let $T = \mathbb{C}[y_1, \ldots, y_m, z_1, \ldots, z_n]$, and $R = T / \operatorname{ann}_T(F)$. Then R is Gorenstein Artin, and is called a connected sum of R_1 and R_2 over \mathbb{C} , denoted $R_1 \#_{\mathbb{C}} R_2$.

A natural question is:

Question 1.1. How are the defining ideals of R, R_1 and R_2 related?

This is answered in Remark ??. We first introduce some notation.

Note. The material in the rest of Section 1, and in Sections 2 and 3 is taken from [?]. Some of the material can also be found in [?] and [?, Chapter 4].

Notation.

a) Let $(T, \mathfrak{m}, \mathsf{k})$ be an Artinian local ring. The *socle* of T is $\operatorname{soc}(T) = \operatorname{ann}_T(\mathfrak{m})$. The *Loewy* length of T is $\ell\ell(T) = \max\{n : \mathfrak{m}^n \neq 0\}$.¹

Observe that T is not a field if and only if $\ell\ell(T) \ge 1$. Furthermore, if T is Gorenstein, then $\operatorname{soc}(T) \subset \mathfrak{m}^2$ if and only if $\ell\ell(T) \ge 2$.

- b) For positive integers m and n, \mathbf{Y} and \mathbf{Z} denote the sets of indeterminates $\{Y_1, \ldots, Y_m\}$ and $\{Z_1, \ldots, Z_n\}$ respectively, and $\mathbf{Y} \cdot \mathbf{Z}$ denotes $\{Y_i Z_j : 1 \le i \le m, 1 \le j \le n\}$.
- c) For an ideal J of $k[\mathbf{Y}]$ or $k[\mathbf{Z}]$, J^e denotes its extension to $k[\mathbf{Y}, \mathbf{Z}]$ via the natural inclusions $\iota_Y : k[\mathbf{Y}] \hookrightarrow k[\mathbf{Y}, \mathbf{Z}]$ and $\iota_Z : k[\mathbf{Z}] \hookrightarrow k[\mathbf{Y}, \mathbf{Z}]$ respectively.

In the next two sections, we see the definition and some basic properties of fibre products and connected sums. When $(R, \mathfrak{m}_R, \mathsf{k})$ and $(S, \mathfrak{m}_S, \mathsf{k})$ are equicharacteristic, i.e., they contain a field and hence their common residue field k , we can say more about their fibre products and connected sums over k . These are recorded in Remarks ?? and ??.

¹If T is Gorenstein Artin, its Loewy length is also referred to as *socle degree* in the literature.

H. ANANTHNARAYAN

2. FIBRE PRODUCTS

Definition 2.1. Let $(R, \mathfrak{m}_R, \mathsf{k})$ and $(S, \mathfrak{m}_S, \mathsf{k})$ be local rings. The fibre product of R and S over k is the ring $R \times_k S = \{(r,s) \in R \times S : \pi_R(r) = \pi_S(s)\}$, where π_R and π_S are the natural projections from R and S respectively onto k.

Remark 2.2. With the notation as in Definition ??, set $P = R \times_k S$. Then, by identifying \mathfrak{m}_R with $\{(r,0): r \in \mathfrak{m}_R\}$ and \mathfrak{m}_S with $\{(0,s): s \in \mathfrak{m}_S\}$, we see that:

- a) P is a local ring with maximal ideal $\mathfrak{m}_P = \mathfrak{m}_R \times \mathfrak{m}_S$.
- b) (Trivial fibre product) Every ring is trivially a fibre product over its residue field. Indeed, if $(P, \mathfrak{m}_P, \mathsf{k})$ is a local ring, then $P \times_{\mathsf{k}} \mathsf{k} \simeq P$.
- c) It follows from [?, (1.0.3)] that a local ring $(P, \mathfrak{m}_P, \mathsf{k})$ decomposes nontrivially as a fibre product over k if and only if $\mathfrak{m}_P = \langle y_1, \ldots, y_m, z_1, \ldots, z_n \rangle$ for $m, n \ge 1$ with $\langle \mathbf{y} \rangle \cap \langle \mathbf{z} \rangle = 0$. In this case, we can write $P \simeq R \times_k S$, where $R = P/\langle \mathbf{z} \rangle$ and $S = P/\langle \mathbf{y} \rangle$.

Remark 2.3 (Fibre Products in Equicharacteristic).

Let $R = \mathsf{k}[Y_1, \ldots, Y_m]/I_R$ and $S = \mathsf{k}[Z_1, \ldots, Z_n]/I_S$ be k-algebras with $I_R \subseteq \langle \mathbf{Y} \rangle^2$ and $I_S \subseteq \langle \mathbf{Z} \rangle^2$. Let $P \simeq R \times_k S$. Then $P = \mathsf{k}[\mathbf{Y}, \mathbf{Z}]/I_P$ where a) $I_P = I_R^e + I_S^e + \langle \mathbf{Y} \cdot \mathbf{Z} \rangle$, $\langle \mathbf{Y} \rangle \cap \langle \mathbf{Z} \rangle \subseteq I_P \subseteq \langle \mathbf{Y}, \mathbf{Z} \rangle^2$, and b) $I_R = I_P \cap \mathbf{k}[\mathbf{Y}]$, and $I_S = I_P \cap \mathbf{k}[\mathbf{Z}]$.

3. Connected Sums

If $(R, \mathfrak{m}_R, \mathsf{k})$ and $(S, \mathfrak{m}_S, \mathsf{k})$ are Artinian local rings, neither of which is a field, then $R \times_{\mathsf{k}} S$ is not Gorenstein. A connected sum of R and S is a quotient of $R \times_k S$ that is Gorenstein.

Definition 3.1. Let $(R, \mathfrak{m}_R, \mathsf{k})$ and $(S, \mathfrak{m}_S, \mathsf{k})$ be Gorenstein Artin local rings different from k. Let $\operatorname{soc}(R) = \langle \delta_R \rangle$, $\operatorname{soc}(S) = \langle \delta_S \rangle$. Identifying δ_R with $(\delta_R, 0)$ and δ_S with $(0, \delta_S)$, a connected sum of R and S over k, denoted $R\#_kS$, is the ring $R\#_kS = (R \times_k S)/\langle \delta_R - \delta_S \rangle$.

Connected sums of R and S over k depend on the generators of the socle δ_R and δ_S chosen. For example, the connected sums $Q_1 = (R \times_k S)/\langle y^2 - z^2 \rangle$ and $Q_2 = (R \times_k S)/\langle y^2 - 5z^2 \rangle$ of $R = \mathbb{Q}[Y]/\langle Y^3 \rangle$ and $S = \mathbb{Q}[Z]/\langle Z^3 \rangle$ are not isomorphic as rings, as shown in [?, 3.1].

Remark 3.2. With notation as in Definition ??, set $P = R \times_k S$ and let $Q = R \#_k S$.

- a) (Trivial connected sum) Every Gorenstein Artin local ring that is not a field is trivially a connected sum over its residue field. In order to see this, consider $(R, \mathfrak{m}_R, \mathsf{k})$ to be a Gorenstein Artin local ring with $\ell\ell(R) \geq 1$ and S be a k-algebra of length two. Note that this forces S to be Gorenstein. One can check that $R \#_k S \simeq R$.
- b) If $\ell\ell(R)$, $\ell\ell(S) \ge 1$, then Q is a Gorenstein Artin local ring with $\ell\ell(Q) = \max\{\ell\ell(R), \ell\ell(S)\}$. This is proved in [?, 4.4]; see [?, 2.8] for a more general result.

We can now answer Question ??.

Remark 3.3.

Let $R = \mathbf{k}[\mathbf{Y}]/I_R$, $S = \mathbf{k}[\mathbf{Z}]/I_S$ and $P = R \times_{\mathbf{k}} S \simeq \mathbf{k}[\mathbf{Y}, \mathbf{Z}]/I_P$ be as in Remark ??.

Suppose R and S are Gorenstein and $Q = R \#_k S$ is their connected sum over k. Then, by Definition ??, there exist $\Delta_R \in \mathsf{k}[\mathbf{Y}]$ and $\Delta_S \in \mathsf{k}[\mathbf{Z}]$ such that their respective images $\delta_R \in R$ and $\delta_S \in S$ generate the respective socles and $Q \simeq (R \times_k S) / \langle \delta_R - \delta_S \rangle$.

Thus $Q \simeq \mathsf{k}[\mathbf{Y}, \mathbf{Z}]/I_Q$, where $I_Q = I_P + \langle \Delta_R - \Delta_S \rangle = I_R^e + I_S^e + \langle \mathbf{Y} \cdot \mathbf{Z} \rangle + \langle \Delta_R - \Delta_S \rangle$.

Question 3.4. When is a Gorenstein Artin local ring decomposable as a connected sum over its residue field?

The following characterisation of connected sums of k-algebras is proved in [?].

Theorem 3.5 (Connected Sums in Equicharacteristic). Let Q be a Gorenstein Artin local k-algebra with $\ell\ell(Q) \geq 2$. Then the following are equivalent:

- i) $Q \simeq R \#_k S$ for Gorenstein Artin k-algebras R and S with $\ell \ell(R), \ell \ell(S) \geq 2$.
- ii) $Q \simeq \mathsf{k}[Y_1, \ldots, Y_m, Z_1, \ldots, Z_n]/I_Q$ for $m, n \ge 1$ with $\mathbf{Y} \cdot \mathbf{Z} \subset I_Q \subset \langle \mathbf{Y}, \mathbf{Z} \rangle^2$.

If the above conditions are satisfied, then we can write $R = \mathsf{k}[\mathbf{Y}]/I_R$, $S = \mathsf{k}[\mathbf{Z}]/I_S$ with $I_R = I_Q \cap \mathsf{k}[\mathbf{Y}]$, and $I_S = I_Q \cap \mathsf{k}[\mathbf{Z}]$.

4. Idealisation of a Fibre Product

Let $R = \mathbf{k}[\mathbf{Y}]/I_R$, $S = \mathbf{k}[\mathbf{Z}]/I_S$ and $P = R \times_k S \simeq \mathbf{k}[\mathbf{Y}, \mathbf{Z}]/I_P$ be as in Remark ??. Let ω_R , ω_S , and ω_P be respective canonical modules for R, S and P. Recall that the idealisations $Q = P \ltimes \omega_P$, $R' = R \ltimes \omega_R$ and $S' = S \ltimes \omega_S$ are Gorenstein Artin. Since $P = R \times_k S$, a natural question is: Is Q related to R' and S'? If so, what is the relation?

As an answer, we have the following theorem:

Theorem 4.1. Let $(P, \mathfrak{m}_P, \mathsf{k})$ be an Artinian local k-algebra with a canonical module ω_P . Let R and S be local k-algebras with non-zero maximal ideals, and respective canonical modules ω_R and ω_S . If $P = R \times_{\mathsf{k}} S$, then $Q \simeq R' \#_{\mathsf{k}} S'$, where $R' = R \mathsf{K} \omega_R$ and $S' = S \mathsf{K} \omega_S$.

This is an application of Theorem ??. When $k = \mathbb{C}$, one can use inverse systems to prove it. The key points are the following observations in terms of inverse systems:

i) Let $P = R \times_{k} S$. If $\omega_{R} = \langle F_{1}, \ldots, F_{r} \rangle \subset \mathbb{C}[\mathbf{Y}]$, and $\omega_{S} = \langle G_{1}, \ldots, G_{s} \rangle \subset \mathbb{C}[\mathbf{Z}]$, then $\omega_{P} = \langle F_{1}, \ldots, F_{r}, G_{1}, \ldots, G_{s} \rangle \subset \mathbb{C}[\mathbf{Y}, \mathbf{Z}]$. ii) If $\omega_{R'} = \langle F \rangle \subset \mathbb{C}[\mathbf{Y}]$, $\omega_{S'} = \langle G \rangle \subset \mathbb{C}[\mathbf{Z}]$, and $Q \simeq R' \#_{k} S'$, then $\omega_{Q} = \langle F + cG \rangle \subset \mathbb{C}[\mathbf{Y}, \mathbf{Z}]$, for some $c \in \mathbb{C} \setminus \{0\}$.

We illustrate the proof when $k = \mathbb{C}$ using the following example:

Example 4.2. Let $R = \mathbb{C}[y_1]/\langle y_1^3 \rangle$, $S = \mathbb{C}[y_2]/\langle y_2^4 \rangle$. In terms of inverse systems, we can write $\omega_R = \langle Y_1^2 \rangle$ and $\omega_S = \langle Y_2^3 \rangle$. Furthermore, if $R' = R \ltimes \omega_R$ and $S' = S \ltimes \omega_S$, then R' and S' correspond to $F_1 = Z_1 Y_1^2 \in \mathbb{C}[Y_1, Z_1]$, and $F_2 = Z_2 Y_2^3 \in \mathbb{C}[Y_2, Z_2]$ respectively.

Let $T = \mathbb{C}[y_1, y_2]$, and $E = \mathbb{C}[Y_1, Y_2]$. Then $P = R \times_k S \simeq \mathbb{C}[y_1, y_2]/\langle y_1^3, y_1y_2, y_2^4 \rangle$, and it can easily be checked that $\omega_P = \operatorname{ann}_E(\langle y_1^3, y_1y_2, y_2^4 \rangle) = \langle Y_1^2, Y_2^3 \rangle$.

Thus, $Q = T' / \operatorname{ann}_{T'}(F)$, where $T' = \mathbb{C}[y_1, y_2, z_1, z_2]$, and $F = Z_1 Y_1^2 + Z_2 Y_2^3 \in E' = \mathbb{C}[Y_1, Y_2, Z_1, Z_2]$. Since $F = F_1 + F_2$, we see that $Q \simeq R \#_k S$.

References

- H. Ananthnarayan, Approximating Artinian rings by Gorenstein rings and three-standardness of the maximal ideal, Ph.D. Thesis, University of Kansas (2009).
- [2] H. Ananthnarayan, L. L. Avramov, W. F. Moore, Connected sums of Gorenstein local rings, J. Reine Angew. Math. 667 (2012), 149–176.
- [3] H. Ananthnarayan, E. Celikbas, Z. Yang, Decomposing Gorenstein rings as connected sums, Preprint.
- [4] J. Lescot, La série de Bass d'un produit fibré d'anneaux locaux, Séminaire d'Algèbre Dubreil-Malliavin, (Paris, 1982), Lecture Notes in Math. 1029, Springer, Berlin, 1983; 218–239.

DEPARTMENT OF MATHEMATICS, I.I.T. BOMBAY, POWAI, MUMBAI 400076. *E-mail address*: h.ananth@iitb.ac.in