SOME CONSTRUCTIONS OF GORENSTEIN ARTIN RINGS

H. ANANTHNARAYAN
RESEARCH TALK AT TRIBHUVAN UNIVERSITY
22ND APRIL, 2015

Abstract

Using inverse systems, one can construct Gorenstein Artin rings, including the idealisation of a canonical module of an Artinian local ring, as seen in the preparatory talk. Given two Gorenstein Artin rings, we use inverse systems to construct a new Gorenstein Artin ring called their connected sum. Finally, we see a condition under which the idealisation is a connected sum.

1. Introduction

Consider the polynomial rings $T_{1}=\mathbb{C}\left[y_{1}, \ldots, y_{m}\right], T_{2}=\mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$, and let $E_{1}=$ $\mathbb{C}\left[Y_{1}, \ldots, Y_{m}\right], E_{2}=\mathbb{C}\left[Z_{1}, \ldots, Z_{n}\right]$. Then T_{i} acts on E_{i} by partial differentiation.

Let $F_{1} \in E_{1}, F_{2} \in E_{2}$. Recall that $R_{i}=T_{i} / \operatorname{ann}_{T_{i}}\left(F_{i}\right)$ are Gorenstein Artin, for $i=1,2$.
Define $F=F_{1}+F_{2} \in E=\mathbb{C}\left[Y_{1}, \ldots, Y_{m}, Z_{1}, \ldots, Z_{n}\right]$. Let $T=\mathbb{C}\left[y_{1}, \ldots, y_{m}, z_{1}, \ldots, z_{n}\right]$, and $R=T / \operatorname{ann}_{T}(F)$. Then R is Gorenstein Artin, and is called a connected sum of R_{1} and R_{2} over \mathbb{C}, denoted $R_{1} \# \mathbb{C} R_{2}$.

A natural question is:
Question 1.1. How are the defining ideals of R, R_{1} and R_{2} related?
This is answered in Remark ??. We first introduce some notation.
Note. The material in the rest of Section 1, and in Sections 2 and 3 is taken from [?]. Some of the material can also be found in [?] and [?, Chapter 4].

Notation.

a) Let $(T, \mathfrak{m}, \mathrm{k})$ be an Artinian local ring. The socle of T is $\operatorname{soc}(T)=\operatorname{ann}_{T}(\mathfrak{m})$. The Loewy length of T is $\ell \ell(T)=\max \left\{n: \mathfrak{m}^{n} \neq 0\right\}$. ${ }^{1}$

Observe that T is not a field if and only if $\ell \ell(T) \geq 1$. Furthermore, if T is Gorenstein, then $\operatorname{soc}(T) \subset \mathfrak{m}^{2}$ if and only if $\ell(T) \geq 2$.
b) For positive integers m and n, \mathbf{Y} and \mathbf{Z} denote the sets of indeterminates $\left\{Y_{1}, \ldots, Y_{m}\right\}$ and $\left\{Z_{1}, \ldots, Z_{n}\right\}$ respectively, and $\mathbf{Y} \cdot \mathbf{Z}$ denotes $\left\{Y_{i} Z_{j}: 1 \leq i \leq m, 1 \leq j \leq n\right\}$.
c) For an ideal J of $\mathrm{k}[\mathbf{Y}]$ or $\mathrm{k}[\mathbf{Z}], J^{e}$ denotes its extension to $\mathrm{k}[\mathbf{Y}, \mathbf{Z}]$ via the natural inclusions $\iota_{Y}: \mathrm{k}[\mathbf{Y}] \hookrightarrow \mathrm{k}[\mathbf{Y}, \mathbf{Z}]$ and $\iota_{Z}: \mathrm{k}[\mathbf{Z}] \hookrightarrow \mathrm{k}[\mathbf{Y}, \mathbf{Z}]$ respectively.
In the next two sections, we see the definition and some basic properties of fibre products and connected sums. When $\left(R, \mathfrak{m}_{R}, \mathrm{k}\right)$ and $\left(S, \mathfrak{m}_{S}, \mathrm{k}\right)$ are equicharacteristic, i.e., they contain a field and hence their common residue field k, we can say more about their fibre products and connected sums over k. These are recorded in Remarks ?? and ??.

[^0]
2. Fibre Products

Definition 2.1. Let $\left(R, \mathfrak{m}_{R}, \mathrm{k}\right)$ and $\left(S, \mathfrak{m}_{S}, \mathrm{k}\right)$ be local rings. The fibre product of R and S over k is the ring $R \times_{\mathrm{k}} S=\left\{(r, s) \in R \times S: \pi_{R}(r)=\pi_{S}(s)\right\}$, where π_{R} and π_{S} are the natural projections from R and S respectively onto k.

Remark 2.2. With the notation as in Definition ??, set $P=R \times_{\mathrm{k}} S$. Then, by identifying \mathfrak{m}_{R} with $\left\{(r, 0): r \in \mathfrak{m}_{R}\right\}$ and \mathfrak{m}_{S} with $\left\{(0, s): s \in \mathfrak{m}_{S}\right\}$, we see that:
a) P is a local ring with maximal ideal $\mathfrak{m}_{P}=\mathfrak{m}_{R} \times \mathfrak{m}_{S}$.
b) (Trivial fibre product) Every ring is trivially a fibre product over its residue field. Indeed, if $\left(P, \mathfrak{m}_{P}, \mathrm{k}\right)$ is a local ring, then $P \times_{\mathrm{k}} \mathrm{k} \simeq P$.
c) It follows from [?, (1.0.3)] that a local ring $\left(P, \mathfrak{m}_{P}, \mathrm{k}\right)$ decomposes nontrivially as a fibre product over k if and only if $\mathfrak{m}_{P}=\left\langle y_{1}, \ldots, y_{m}, z_{1}, \ldots, z_{n}\right\rangle$ for $m, n \geq 1$ with $\langle\mathbf{y}\rangle \cap\langle\mathbf{z}\rangle=0$. In this case, we can write $P \simeq R \times_{\mathrm{k}} S$, where $R=P /\langle\mathbf{z}\rangle$ and $S=P /\langle\mathbf{y}\rangle$.

Remark 2.3 (Fibre Products in Equicharacteristic).
Let $R=\mathrm{k}\left[Y_{1}, \ldots, Y_{m}\right] / I_{R}$ and $S=\mathrm{k}\left[Z_{1}, \ldots, Z_{n}\right] / I_{S}$ be k-algebras with $I_{R} \subseteq\langle\mathbf{Y}\rangle^{2}$ and $I_{S} \subseteq\langle\mathbf{Z}\rangle^{2}$. Let $P \simeq R \times_{\mathrm{k}} S$. Then $P=\mathrm{k}[\mathbf{Y}, \mathbf{Z}] / I_{P}$ where
a) $I_{P}=I_{R}^{e}+I_{S}^{e}+\langle\mathbf{Y} \cdot \mathbf{Z}\rangle,\langle\mathbf{Y}\rangle \cap\langle\mathbf{Z}\rangle \subseteq I_{P} \subseteq\langle\mathbf{Y}, \mathbf{Z}\rangle^{2}$, and
b) $I_{R}=I_{P} \cap \mathrm{k}[\mathbf{Y}]$, and $I_{S}=I_{P} \cap \mathrm{k}[\mathbf{Z}]$.

3. Connected Sums

If ($R, \mathfrak{m}_{R}, \mathbf{k}$) and $\left(S, \mathfrak{m}_{S}, \mathbf{k}\right)$ are Artinian local rings, neither of which is a field, then $R \times_{\mathrm{k}} S$ is not Gorenstein. A connected sum of R and S is a quotient of $R \times_{\mathrm{k}} S$ that is Gorenstein.

Definition 3.1. Let $\left(R, \mathfrak{m}_{R}, \mathfrak{k}\right)$ and $\left(S, \mathfrak{m}_{S}, \mathfrak{k}\right)$ be Gorenstein Artin local rings different from k. Let $\operatorname{soc}(R)=\left\langle\delta_{R}\right\rangle, \operatorname{soc}(S)=\left\langle\delta_{S}\right\rangle$. Identifying δ_{R} with $\left(\delta_{R}, 0\right)$ and δ_{S} with $\left(0, \delta_{S}\right)$, a connected sum of R and S over k , denoted $R \#_{\mathrm{k}} S$, is the ring $R \#_{\mathrm{k}} S=\left(R \times_{\mathrm{k}} S\right) /\left\langle\delta_{R}-\delta_{S}\right\rangle$.

Connected sums of R and S over k depend on the generators of the socle δ_{R} and δ_{S} chosen. For example, the connected sums $Q_{1}=\left(R \times_{\mathrm{k}} S\right) /\left\langle y^{2}-z^{2}\right\rangle$ and $Q_{2}=\left(R \times_{\mathrm{k}} S\right) /\left\langle y^{2}-5 z^{2}\right\rangle$ of $R=\mathbb{Q}[Y] /\left\langle Y^{3}\right\rangle$ and $S=\mathbb{Q}[Z] /\left\langle Z^{3}\right\rangle$ are not isomorphic as rings, as shown in [?, 3.1].

Remark 3.2. With notation as in Definition ??, set $P=R \times_{\mathrm{k}} S$ and let $Q=R \#_{\mathrm{k}} S$.
a) (Trivial connected sum) Every Gorenstein Artin local ring that is not a field is trivially a connected sum over its residue field. In order to see this, consider $\left(R, \mathfrak{m}_{R}, \mathrm{k}\right)$ to be a Gorenstein Artin local ring with $\ell \ell(R) \geq 1$ and S be a k -algebra of length two. Note that this forces S to be Gorenstein. One can check that $R \#_{\mathrm{k}} S \simeq R$.
b) If $\ell \ell(R), \ell \ell(S) \geq 1$, then Q is a Gorenstein Artin local ring with $\ell \ell(Q)=\max \{\ell \ell(R), \ell \ell(S)\}$. This is proved in [?, 4.4]; see [?, 2.8] for a more general result.
We can now answer Question ??

Remark 3.3.

Let $R=\mathrm{k}[\mathbf{Y}] / I_{R}, S=\mathrm{k}[\mathbf{Z}] / I_{S}$ and $P=R \times_{\mathrm{k}} S \simeq \mathrm{k}[\mathbf{Y}, \mathbf{Z}] / I_{P}$ be as in Remark ??.
Suppose R and S are Gorenstein and $Q=R \#_{\mathrm{k}} S$ is their connected sum over k. Then, by Definition ??, there exist $\Delta_{R} \in \mathrm{k}[\mathbf{Y}]$ and $\Delta_{S} \in \mathrm{k}[\mathbf{Z}]$ such that their respective images $\delta_{R} \in R$ and $\delta_{S} \in S$ generate the respective socles and $Q \simeq\left(R \times_{\mathrm{k}} S\right) /\left\langle\delta_{R}-\delta_{S}\right\rangle$.

Thus $Q \simeq \mathrm{k}[\mathbf{Y}, \mathbf{Z}] / I_{Q}$, where $I_{Q}=I_{P}+\left\langle\Delta_{R}-\Delta_{S}\right\rangle=I_{R}^{e}+I_{S}^{e}+\langle\mathbf{Y} \cdot \mathbf{Z}\rangle+\left\langle\Delta_{R}-\Delta_{S}\right\rangle$.

Question 3.4. When is a Gorenstein Artin local ring decomposable as a connected sum over its residue field?

The following characterisation of connected sums of k-algebras is proved in [?].
Theorem 3.5 (Connected Sums in Equicharacteristic). Let Q be a Gorenstein Artin local k -algebra with $\ell \ell(Q) \geq 2$. Then the following are equivalent:
i) $Q \simeq R \#_{\mathrm{k}} S$ for Gorenstein Artin k -algebras R and S with $\ell \ell(R), \ell \ell(S) \geq 2$.
ii) $Q \simeq \mathrm{k}\left[Y_{1}, \ldots, Y_{m}, Z_{1} \ldots, Z_{n}\right] / I_{Q}$ for $m, n \geq 1$ with $\mathbf{Y} \cdot \mathbf{Z} \subset I_{Q} \subset\langle\mathbf{Y}, \mathbf{Z}\rangle^{2}$.

If the above conditions are satisfied, then we can write $R=\mathrm{k}[\mathbf{Y}] / I_{R}, S=\mathrm{k}[\mathbf{Z}] / I_{S}$ with $I_{R}=I_{Q} \cap \mathrm{k}[\mathbf{Y}]$, and $I_{S}=I_{Q} \cap \mathrm{k}[\mathbf{Z}]$.

4. Idealisation of a Fibre Product

Let $R=\mathrm{k}[\mathbf{Y}] / I_{R}, S=\mathrm{k}[\mathbf{Z}] / I_{S}$ and $P=R \times_{\mathrm{k}} S \simeq \mathrm{k}[\mathbf{Y}, \mathbf{Z}] / I_{P}$ be as in Remark ??. Let ω_{R}, ω_{S}, and ω_{P} be respective canonical modules for R, S and P. Recall that the idealisations $Q=P \ltimes \omega_{P}, R^{\prime}=R 风 \omega_{R}$ and $S^{\prime}=S 风 \omega_{S}$ are Gorenstein Artin. Since $P=R \times_{\mathrm{k}} S$, a natural question is: Is Q related to R^{\prime} and S^{\prime} ? If so, what is the relation?

As an answer, we have the following theorem:
Theorem 4.1. Let $\left(P, \mathfrak{m}_{P}, \mathrm{k}\right)$ be an Artinian local k -algebra with a canonical module ω_{P}. Let R and S be local k -algebras with non-zero maximal ideals, and respective canonical modules ω_{R} and ω_{S}. If $P=R \times_{\mathrm{k}} S$, then $Q \simeq R^{\prime} \#_{\mathrm{k}} S^{\prime}$, where $R^{\prime}=R \ltimes \omega_{R}$ and $S^{\prime}=S \ltimes \omega_{S}$.

This is an application of Theorem ??. When $\mathrm{k}=\mathbb{C}$, one can use inverse systems to prove it. The key points are the following observations in terms of inverse systems:
i) Let $P=R \times_{\mathrm{k}} S$. If $\omega_{R}=\left\langle F_{1}, \ldots, F_{r}\right\rangle \subset \mathbb{C}[\mathbf{Y}]$, and $\omega_{S}=\left\langle G_{1}, \ldots, G_{s}\right\rangle \subset \mathbb{C}[\mathbf{Z}]$, then $\omega_{P}=\left\langle F_{1}, \ldots, F_{r}, G_{1}, \ldots, G_{s}\right\rangle \subset \mathbb{C}[\mathbf{Y}, \mathbf{Z}]$.
ii) If $\omega_{R^{\prime}}=\langle F\rangle \subset \mathbb{C}[\mathbf{Y}], \omega_{S^{\prime}}=\langle G\rangle \subset \mathbb{C}[\mathbf{Z}]$, and $Q \simeq R^{\prime} \#_{\mathrm{k}} S^{\prime}$, then $\omega_{Q}=\langle F+c G\rangle \subset \mathbb{C}[\mathbf{Y}, \mathbf{Z}]$, for some $c \in \mathbb{C} \backslash\{0\}$.

We illustrate the proof when $\mathrm{k}=\mathbb{C}$ using the following example:
Example 4.2. Let $R=\mathbb{C}\left[y_{1}\right] /\left\langle y_{1}^{3}\right\rangle, S=\mathbb{C}\left[y_{2}\right] /\left\langle y_{2}^{4}\right\rangle$. In terms of inverse systems, we can write $\omega_{R}=\left\langle Y_{1}^{2}\right\rangle$ and $\omega_{S}=\left\langle Y_{2}^{3}\right\rangle$. Furthermore, if $R^{\prime}=R \propto \omega_{R}$ and $S^{\prime}=S \propto \omega_{S}$, then R^{\prime} and S^{\prime} correspond to $F_{1}=Z_{1} Y_{1}^{2} \in \mathbb{C}\left[Y_{1}, Z_{1}\right]$, and $F_{2}=Z_{2} Y_{2}^{3} \in \mathbb{C}\left[Y_{2}, Z_{2}\right]$ respectively.

Let $T=\mathbb{C}\left[y_{1}, y_{2}\right]$, and $E=\mathbb{C}\left[Y_{1}, Y_{2}\right]$. Then $P=R \times_{k} S \simeq \mathbb{C}\left[y_{1}, y_{2}\right] /\left\langle y_{1}^{3}, y_{1} y_{2}, y_{2}^{4}\right\rangle$, and it can easily be checked that $\omega_{P}=\operatorname{ann}_{E}\left(\left\langle y_{1}^{3}, y_{1} y_{2}, y_{2}^{4}\right\rangle\right)=\left\langle Y_{1}^{2}, Y_{2}^{3}\right\rangle$.

Thus, $Q=T^{\prime} / \operatorname{ann}_{T^{\prime}}(F)$, where $T^{\prime}=\mathbb{C}\left[y_{1}, y_{2}, z_{1}, z_{2}\right]$, and $F=Z_{1} Y_{1}^{2}+Z_{2} Y_{2}^{3} \in E^{\prime}=$ $\mathbb{C}\left[Y_{1}, Y_{2}, Z_{1}, Z_{2}\right]$. Since $F=F_{1}+F_{2}$, we see that $Q \simeq R \#{ }_{\mathrm{k}} S$.

References

[1] H. Ananthnarayan, Approximating Artinian rings by Gorenstein rings and three-standardness of the maximal ideal, Ph.D. Thesis, University of Kansas (2009).
[2] H. Ananthnarayan, L. L. Avramov, W. F. Moore, Connected sums of Gorenstein local rings, J. Reine Angew. Math. 667 (2012), 149-176.
[3] H. Ananthnarayan, E. Celikbas, Z. Yang, Decomposing Gorenstein rings as connected sums, Preprint.
[4] J. Lescot, La série de Bass d'un produit fibré d'anneaux locaux, Séminaire d'Algèbre Dubreil-Malliavin, (Paris, 1982), Lecture Notes in Math. 1029, Springer, Berlin, 1983; 218-239.

Department of Mathematics, I.I.T. Bombay, Powai, Mumbai 400076.
E-mail address: h.ananth@iitb.ac.in

[^0]: ${ }^{1}$ If T is Gorenstein Artin, its Loewy length is also referred to as socle degree in the literature.

