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Abstract. We start with a ring without a multiplicative identity, and construct a ring
with one. Given a ring R and an R-module M , this construction can be mimicked to create
a new ring in which M is an ideal, called its idealisation. Using the method of inverse
systems, we construct Artinian rings, and special modules associated to them. We then
identify the idealisation of these modules in terms of inverse systems.

1. Idealisation

Recall that a ring R is an abelian group under addition with a compatible multiplicative
structure. Thus, (R,+) is an abelian group, and we have a multiplication ∗ : R × R → R
which is associative, i.e., for all a, b, c ∈ R, a ∗ (b ∗ c) = (a ∗ b) ∗ c, and distributes over +,
i.e., for all a, b, c ∈ R, a ∗ (b+ c) = (a ∗ b) + (a ∗ c) and (a+ b) ∗ c = (a ∗ c) + (b ∗ c).

Notation. Let R be a ring, n ∈ Z, and a ∈ R. We use the following notation:

na =

 a+ · · ·+ a (n times) n > 0
(−a) + · · ·+ (−a) (−n times) n < 0
0 n = 0

.

We say R is a ring with unity if it has a multiplicative identity, i.e., there is an element
1 ∈ R such that a ∗ 1 = a = 1 ∗ a for all a ∈ R. If R does not have a multiplicative identity,
then following Jacobson ([?]), we call R a ‘rng’.

The existence of a multiplicative identity in R leads to good properties, for example,
the existence of maximal ideals. But the definition of a ring does not force R to have
one. However, we can assume that R contains a multiplicative identity by the following
construction:

Construction 1.1. ([?]) Let (R,+R, ∗R) be a ‘rng’. Set S = Z ⊕ R. Define addition and
multiplication on S as follows: For m, n ∈ Z, and a, b ∈ R,

define (m, a) +S (n, b) = (m+ n, a+R b), and (m, a) ∗S (n, b) = (mn,mb+R na+R a ∗R b).

Remark 1.2.
a) (S,+S, ∗S) is a ring with multiplicative identity (1, 0).
b) The function from R to S given by a 7→ (0, a) is one-one, and hence R can be identified
with the ideal {(0, a)|a ∈ R} of S.
c) S is commutative if and only if R is so.

Observe that
i) (R,+R) is an abelian group, with a compatible multiplication Z × R → R given by
(n, a) 7→ na.
ii) ∗R is a multiplication on R which is associative and distributes over addition.
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We have used the above properties to create a ring with a unity, in which R is an ideal.
This process is called the idealisation of R. We now use observations (i) and (ii) to generalise
the construction of idealisation to the following setup:

Let R be a ring with 1, and M an R-module. Thus (M,+M) is an abelian group, with
a compatible ‘scalar’ multiplication R ×M → M . For example, if R is a field, then M is a
vector space over R.

Note that every R-module M has a multiplication ∗M : M ×M →M given by (x, y) 7→ 0,
which is compatible with the addition on M . This is called the trivial multiplication on M .

Thus, we can now mimic Construction 1.2, using the pair (R,M) in place of (Z, R). This
gives us the idealisation of M , denoted R lX M .

Construction 1.3. Let S = R ⊕M . For a, b ∈ R, and x, y ∈ M , define addition and
multiplication on S as follows: (a, x) + (b, y) = (a+ b, x+y) and (a, x) · (b, y) = (ab, ay+ bx).

Remark 1.4.
a) S is a ring with multiplicative identity (1, 0) with operations as above. Furthermore, S is
commutative if and only if R is so.
b) The function from M to S given by x 7→ (0, x) is one-one, and hence M can be identified
with the ideal {(0, x)|x ∈M} of S. Moreover, M2 = 0 in S.

2. Inverse Systems

Note. The material in Sections 2 and 3 is taken from [?].
Consider the polynomial ring T = C[y1, . . . , yd], and let E = C[Y1, . . . , Yd]. Then T acts

on E by partial differentiation, i.e.,

for f ∈ T and F ∈ E, define f(y1, . . . , yd) ·F (Y1, . . . , Yd) = f
(

∂
∂Y1
, . . . , ∂

∂Yd

)
F (Y1, . . . , Yd).

Example 2.1. Let T = C[y1, y2], E = C[Y1, Y2], and F1 = Y 2
1 , F2 = Y1Y

2
2 , F3 = Y 3

2 ∈ E.
For f = y3

2 ∈ T , f · Fi = 0, for i = 1, 2, but f · F3 = 6.

Let W = 〈F1, F2, F3〉 be the T -submodule of E generated by {F1, F2, F3}. What is I =
annT (W ) = {f ∈ T | f · Fi = 0 for all i}? Observe that if deg(f) ≥ 4 for f ∈ T , then
f · Fi = 0 for all i, i.e., f ∈ I. Also, y3

2 · F3 = 6 6= 0 implies that y3
2 6∈ I.

One can check that I = 〈y3
1, y

2
1y2, y1y

3
2, y

4
2〉. Moreover W is an R-module, where R = T/I. 1

By ȳ1 and ȳ2, we denote the respective images of y1 and y2 in R. Using C-bases for R and
W respectively, we can represent their R-module structures pictorially as follows:

1•
ȳ1•

ȳ2•
ȳ21•

ȳ1ȳ2•
ȳ22•

ȳ1ȳ22•
ȳ32•

•
F2

•
F3

•
F1

•
y2F2

•
y2F3

•
y22F2

•
y22F3

•
3y21F1=3y1y22F2=y32F3

It can be shown that W ' Re1⊕Re2⊕Re3
〈y1e3,y2e3−y1e2,y22e2−y1e1,y2e1〉

as an R-module.

Notice from the pictures that R is W turned ‘upside down’. How are they related? It can
be checked that W = annE(I), and the R-module W is a ‘dual’ module of R.

1Exercise: If M is an R-module, then it is also a module over R/ annR(M).
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Definition 2.2. Let T = C[y1, . . . , yd], E = C[Y1, . . . , Yd], and I an ideal in T such that
R = T/I is Artinian. Let W = annE(I). Then
i) W is called a canonical module of R.
ii) R is said to be Gorenstein Artin if R ' W .

Exercise. Let W be a finitely generated T -submodule of E. If I = annT (W ), then R = T/I
is Artinian.

Observe that if R is Gorenstein Artin, then W is cyclic, i.e., there is an F ∈ E such that
W = 〈F 〉, and hence I = annT (F ).

Exercise. The converse is also true, i.e., if I = annT (F ) for some F ∈ E, then R = T/I is
Gorenstein Artin.

3. Idealisation and the Corresponding Polynomial

Let the notation be as in Definition 2.2. Let F1, · · · , Fr ∈ E, W = 〈F1, . . . , Fr〉, and
I = annT (W ). Then R = T/I is Artinian. Let E ′ = E[Z1, . . . , Zr], and T ′ = T [z1, . . . , zr],
where T ′ acts by partial differentiation on E ′, (i.e., zi · Zj = δij), extending the action of T
on E. Consider the polynomial F = Z1F1 + · · ·+ ZrFr ∈ E ′. Note that zi · F = Fi.

The question one asks is: To which Gorenstein Artin ring does this F correspond, and
how is it related to R or W?

Theorem 3.1. The polynomial F corresponds to the idealisation of W , S = R lX W , i.e.,
T ′/ annT ′(F ) ' R lX W . In particular, R lX W is a Gorenstein Artin local ring.

Let us illustrate this by the following example.
With notation as in Example 2.1, let T ′ = C[y1, y2, z1, z2, z3], E ′ = C[Y1, Y2, Z1, Z2, Z3],

and F = Z1F1 + Z2F2 + Z3F3. Observe that K = 〈z1, z2, z3〉2 ⊂ annT ′(F ), and I =
〈y3

1, y
2
2y2, y1y

3
2, y

4
2〉 ⊂ annT ′(F ). Finally, J = 〈y1z3, y2z3− y1z2, y

2
2z2− y1z1, y2z1〉 ⊂ annT ′(F ).

It can be checked that annT ′(F ) = I + J +K.
Let S = R lX W . Since W ' Re1⊕Re2⊕Re3

〈y1e3,y2e3−y1e2,y22e2−y1e1,y2e1〉
as an R-module, and R '

C[y1, y2]/I, we get S ' T ′/(I + J +K) = T ′/ annT ′(F ), illustrating Theorem 3.1. �
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